
 Kotlin Language Documentation

Table of Contents

Overview

Using Kotlin for Server-side Development

Using Kotlin for Android Development

Kotlin JavaScript Overview

Kotlin/Native for Native

Coroutines for asynchronous programming and more

Multiplatform Programming

What's New in Kotlin 1.1

What's New in Kotlin 1.2

What's New in Kotlin 1.3

Standard library

Tooling

Getting Started

Basic Syntax

Idioms

Coding Conventions

Basics

Basic Types

Packages

Control Flow: if, when, for, while

Returns and Jumps

Classes and Objects

Classes and Inheritance

Properties and Fields

Interfaces

Visibility Modifiers

Extensions

7

7

9

11

13

15

16

19

30

39

45

47

48

48

55

60

78

78

88

90

94

97

97

105

109

112

115

2

Data Classes

Sealed Classes

Generics

Nested and Inner Classes

Enum Classes

Object Expressions and Declarations

Inline classes

Delegation

Delegated Properties

Functions and Lambdas

Functions

Higher-Order Functions and Lambdas

Inline Functions

Collections

Kotlin Collections Overview

Constructing Collections

Iterators

Ranges and Progressions

Sequences

Collection Operations Overview

Collection Transformations

Filtering

plus and minus Operators

Grouping

Retrieving Collection Parts

Retrieving Single Elements

Collection Ordering

Collection Aggregate Operations

Collection Write Operations

120

122

123

130

131

133

138

143

145

152

152

159

167

171

171

176

179

181

183

186

188

192

195

196

197

200

203

206

208

3

List Specific Operations

Set Specific Operations

Map Specific Operations

Multiplatform Programming

Platform-Specific Declarations

Building Multiplatform Projects with Gradle

Other

Destructuring Declarations

Type Checks and Casts: 'is' and 'as'

This Expression

Equality

Operator overloading

Null Safety

Exceptions

Annotations

Reflection

Scope Functions

Type-Safe Builders

Experimental API Markers

Reference

Keywords and Operators

Grammar

Java Interop

Calling Java code from Kotlin

Calling Kotlin from Java

JavaScript

Dynamic Type

Calling JavaScript from Kotlin

210

215

216

220

220

222

260

260

263

267

268

269

274

278

281

286

291

299

306

312

312

318

337

337

351

362

362

364

4

Calling Kotlin from JavaScript

JavaScript Modules

JavaScript Reflection

JavaScript DCE

Example

Native

Concurrency in Kotlin/Native

Immutability in Kotlin/Native

Kotlin/Native libraries

Advanced topics

Platform libraries

Kotlin/Native interoperability

Kotlin/Native interoperability with Swift/Objective-C

CocoaPods integration

Kotlin/Native Gradle plugin

Coroutines

Table of contents

Additional references

Coroutine Basics

Cancellation and Timeouts

Composing Suspending Functions

Coroutine Context and Dispatchers

Asynchronous Flow

Channels

Exception Handling

Shared mutable state and concurrency

Select Expression (experimental)

Tools

Documenting Kotlin Code

367

370

374

375

376

377

377

381

382

383

385

386

397

404

407

426

426

426

427

433

438

443

454

477

486

495

501

508

508

5

Annotation Processing with Kotlin

Using Gradle

Using Maven

Using Ant

Kotlin and OSGi

Compiler Plugins

Code Style Migration Guide

Evolution

Kotlin Evolution

Stability of Different Components

Compatibility Guide for Kotlin 1.3

FAQ

FAQ

Comparison to Java Programming Language

512

517

526

534

538

540

547

550

550

556

557

570

570

574

6

Overview

Kotlin is a great t for developing server-side applications, allowing you to write concise and
expressive code while maintaining full compatibility with existing Java-based technology stacks
and a smooth learning curve:

Expressiveness: Kotlin's innovative language features, such as its support for type-safe
builders and delegated properties, help build powerful and easy-to-use abstractions.

Scalability: Kotlin's support for coroutines helps build server-side applications that scale to
massive numbers of clients with modest hardware requirements.

Interoperability: Kotlin is fully compatible with all Java-based frameworks, which lets you stay
on your familiar technology stack while reaping the bene ts of a more modern language.

Migration: Kotlin supports gradual, step by step migration of large codebases from Java to
Kotlin. You can start writing new code in Kotlin while keeping older parts of your system in
Java.

Tooling: In addition to great IDE support in general, Kotlin o ers framework-speci c tooling
(for example, for Spring) in the plugin for IntelliJ IDEA Ultimate.

Learning Curve: For a Java developer, getting started with Kotlin is very easy. The automated
Java to Kotlin converter included in the Kotlin plugin helps with the rst steps. Kotlin Koans
o er a guide through the key features of the language with a series of interactive exercises.

Spring makes use of Kotlin's language features to o er more concise APIs, starting with
version 5.0. The online project generator allows you to quickly generate a new project in
Kotlin.

Vert.x, a framework for building reactive Web applications on the JVM, o ers dedicated
support for Kotlin, including full documentation.

Ktor is a framework built by JetBrains for creating Web applications in Kotlin, making use of
coroutines for high scalability and o ering an easy-to-use and idiomatic API.

kotlinx.html is a DSL that can be used to build HTML in a Web application. It serves as an
alternative to traditional templating systems such as JSP and FreeMarker.

Using Kotlin for Server-side Development

—

—

—

—

—

—

Frameworks for Server-side Development with Kotlin
—

—

—

—

7

https://spring.io
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://start.spring.io/#!language=kotlin
http://vertx.io
https://github.com/vert-x3/vertx-lang-kotlin
http://vertx.io/docs/vertx-core/kotlin/
https://github.com/kotlin/ktor
https://github.com/kotlin/kotlinx.html

The available options for persistence include direct JDBC access, JPA, as well as using NoSQL
databases through their Java drivers. For JPA, the kotlin-jpa compiler plugin adapts Kotlin-
compiled classes to the requirements of the framework.

Kotlin applications can be deployed into any host that supports Java Web applications, including
Amazon Web Services, Google Cloud Platform and more.

To deploy Kotlin applications on Heroku, you can follow the o cial Heroku tutorial.

AWS Labs provides a sample project showing the use of Kotlin for writing AWS Lambda functions.

Google Cloud Platform o ers a series of tutorials for deploying Kotlin applications to GCP, both
for Ktor and App Engine and Spring and App engine. In addition there is an interactive code lab
for deploying a Kotlin Spring application.

Corda is an open-source distributed ledger platform, supported by major banks, and built
entirely in Kotlin.

JetBrains Account, the system responsible for the entire license sales and validation process at
JetBrains, is written in 100% Kotlin and has been running in production since 2015 with no major
issues.

The Creating Web Applications with Http Servlets and Creating a RESTful Web Service with
Spring Boot tutorials show you how you can build and run very small Web applications in
Kotlin.

For a more in-depth introduction to the language, check out the reference documentation on
this site and Kotlin Koans.

—

Deploying Kotlin Server-side Applications

Users of Kotlin on the Server Side

Next Steps
—

—

8

https://www.heroku.com
https://devcenter.heroku.com/articles/getting-started-with-kotlin
https://github.com/awslabs/serverless-photo-recognition
https://aws.amazon.com/lambda/
https://cloud.google.com/community/tutorials/kotlin-ktor-app-engine-java8
https://cloud.google.com/community/tutorials/kotlin-springboot-app-engine-java8
https://codelabs.developers.google.com/codelabs/cloud-spring-cloud-gcp-kotlin
https://www.corda.net/
https://account.jetbrains.com/

Kotlin is a great t for developing Android applications, bringing all of the advantages of a
modern language to the Android platform without introducing any new restrictions:

Compatibility: Kotlin is fully compatible with JDK 6, ensuring that Kotlin applications can run
on older Android devices with no issues. The Kotlin tooling is fully supported in Android
Studio and compatible with the Android build system.

Performance: A Kotlin application runs as fast as an equivalent Java one, thanks to very
similar bytecode structure. With Kotlin's support for inline functions, code using lambdas
often runs even faster than the same code written in Java.

Interoperability: Kotlin is 100% interoperable with Java, allowing to use all existing Android
libraries in a Kotlin application. This includes annotation processing, so databinding and
Dagger work too.

Footprint: Kotlin has a very compact runtime library, which can be further reduced through
the use of ProGuard. In a real application, the Kotlin runtime adds only a few hundred
methods and less than 100K to the size of the .apk le.

Compilation Time: Kotlin supports e cient incremental compilation, so while there's some
additional overhead for clean builds, incremental builds are usually as fast or faster than with
Java.

Learning Curve: For a Java developer, getting started with Kotlin is very easy. The automated
Java to Kotlin converter included in the Kotlin plugin helps with the rst steps. Kotlin Koans
o er a guide through the key features of the language with a series of interactive exercises.

Kotlin has been successfully adopted by major companies, and a few of them have shared their
experiences:

Pinterest has successfully introduced Kotlin into their application, used by 150M people every
month.

Basecamp's Android app is 100% Kotlin code, and they report a huge di erence in
programmer happiness and great improvements in work quality and speed.

Keepsafe's App Lock app has also been converted to 100% Kotlin, leading to a 30% decrease
in source line count and 10% decrease in method count.

The Kotlin team o ers a set of tools for Android development that goes beyond the standard
language features:

Kotlin Android Extensions is a compiler extension that allows you to get rid of
findViewById() calls in your code and to replace them with synthetic compiler-generated

properties.

Using Kotlin for Android Development

—

—

—

—

—

—

Kotlin for Android Case Studies

—

—

—

Tools for Android Development

—

9

https://blog.gouline.net/kotlin-production-tales-62b56057dc8a
https://medium.com/keepsafe-engineering/kotlin-vs-java-compilation-speed-e6c174b39b5d
https://www.youtube.com/watch?v=mDpnc45WwlI
https://m.signalvnoise.com/how-we-made-basecamp-3s-android-app-100-kotlin-35e4e1c0ef12
https://medium.com/keepsafe-engineering/lessons-from-converting-an-app-to-100-kotlin-68984a05dcb6

Anko is a library providing a set of Kotlin-friendly wrappers around the Android APIs, as well
as a DSL that lets you replace your layout .xml les with Kotlin code.

Download and install Android Studio which includes Kotlin support out of the box.

Follow the Getting Started with Android and Kotlin tutorial to create your rst Kotlin
application.

For a more in-depth introduction, check out the reference documentation on this site and
Kotlin Koans.

Another great resource is Kotlin for Android Developers, a book that guides you step by step
through the process of creating a real Android application in Kotlin.

Check out Google's sample projects written in Kotlin.

—

Next Steps
—

—

—

—

—

10

http://github.com/kotlin/anko
https://developer.android.com/studio/index.html
https://leanpub.com/kotlin-for-android-developers
https://developer.android.com/samples/index.html?language=kotlin

Kotlin provides the ability to target JavaScript. It does so by transpiling Kotlin to JavaScript. The
current implementation targets ECMAScript 5.1 but there are plans to eventually target
ECMAScript 2015 as well.

When you choose the JavaScript target, any Kotlin code that is part of the project as well as the
standard library that ships with Kotlin is transpiled to JavaScript. However, this excludes the JDK
and any JVM or Java framework or library used. Any le that is not Kotlin will be ignored during
compilation.

The Kotlin compiler tries to comply with the following goals:

Provide output that is optimal in size

Provide output that is readable JavaScript

Provide interoperability with existing module systems

Provide the same functionality in the standard library whether targeting JavaScript or the JVM
(to the largest possible degree).

You may want to compile Kotlin to JavaScript in the following scenarios:

Creating Kotlin code that targets client-side JavaScript

Interacting with DOM elements. Kotlin provides a series of statically typed interfaces to
interact with the Document Object Model, allowing creation and update of DOM elements.

Interacting with graphics such as WebGL. You can use Kotlin to create graphical
elements on a web page using WebGL.

Creating Kotlin code that targets server-side JavaScript

Working with server-side technology. You can use Kotlin to interact with server-side
JavaScript such as Node.js

Kotlin can be used together with existing third-party libraries and frameworks, such as jQuery or
React. To access third-party frameworks with a strongly-typed API, you can convert TypeScript
de nitions from the De nitely Typed type de nitions repository to Kotlin using the dukat tool.
Alternatively, you can use the dynamic type to access any framework without strong typing.

JetBrains develops and maintains several tools speci cally for the React community: React
bindings as well as Create React Kotlin App. The latter helps you start building React apps with
Kotlin with no build con guration.

Kotlin is compatible with CommonJS, AMD and UMD, making interaction with di erent module
systems straightforward.

Kotlin JavaScript Overview

—

—

—

—

How it can be used

—

—

—

—

—

11

http://definitelytyped.org/
https://github.com/kotlin/dukat
https://github.com/JetBrains/kotlin-wrappers
https://github.com/JetBrains/create-react-kotlin-app

To nd out how to start using Kotlin for JavaScript, please refer to the tutorials.

Getting Started with Kotlin to JavaScript

12

Kotlin/Native is a technology for compiling Kotlin code to native binaries, which can run without a
virtual machine. It is an LLVM based backend for the Kotlin compiler and native implementation
of the Kotlin standard library.

Kotlin/Native is primarily designed to allow compilation for platforms where virtual machines are
not desirable or possible, for example, embedded devices or iOS. It solves the situations when a
developer needs to produce a self-contained program that does not require an additional
runtime or virtual machine.

Kotlin/Native supports the following platforms:

iOS (arm32, arm64, simulator x86_64)

MacOS (x86_64)

Android (arm32, arm64)

Windows (mingw x86_64, x86)

Linux (x86_64, arm32, MIPS, MIPS little endian, Raspberry Pi)

WebAssembly (wasm32)

Kotlin/Native supports two-way interoperability with the Native world. On the one hand, the
compiler creates:

an executable for many platforms

a static library or dynamic library with C headers for C/C++ projects

an Apple framework for Swift and Objective-C projects

On the other hand, Kotlin/Native supports interoperability to use existing libraries directly from
Kotlin/Native:

static or dynamic C Libraries

C, Swift, and Objective-C frameworks

It is easy to include a compiled Kotlin code into existing projects written in C, C++, Swift,
Objective-C, and other languages. It is also easy to use existing native code, static or dynamic C
libraries, Swift/Objective-C frameworks, graphical engines, and anything else directly from
Kotlin/Native.

Kotlin/Native for Native

Why Kotlin/Native?

Target Platforms

—

—

—

—

—

—

Interoperability

—

—

—

—

—

13

https://llvm.org/

Kotlin/Native libraries help to share Kotlin code between projects. POSIX, gzip, OpenGL, Metal,
Foundation, and many other popular libraries and Apple frameworks are pre-imported and
included as Kotlin/Native libraries into the compiler package.

Multiplatform projects are supported between di erent Kotlin and Kotlin/Native targets. This is
the way to share common Kotlin code between many platforms, including Android, iOS, server-
side, JVM, client-side, JavaScript, CSS, and native.

Multiplatform libraries provide the necessary APIs for the common Kotlin code and help to
develop shared parts of a project in Kotlin code once and share it with all of the target platforms.

Tutorials and Documentation

New to Kotlin? Take a look at the Getting Started page.

Suggested documentation pages:

C interop

Swift/Objective-C interop

Recommended tutorials:

A basic Kotlin/Native application

Multiplatform Project: iOS and Android

Types mapping between C and Kotlin/Native

Kotlin/Native as a Dynamic Library

Kotlin/Native as an Apple Framework

Example Projects

Kotlin/Native sources and examples

KotlinConf app

KotlinConf Spinner app

Kotlin/Native sources and examples (.tgz)

Kotlin/Native sources and examples (.zip)

Even more examples are on GitHub.

Sharing Code between Platforms

How to Start

—

—

—

—

—

—

—

—

—

—

—

—

14

https://github.com/JetBrains/kotlin-native/tree/master/samples
https://github.com/JetBrains/kotlinconf-app
https://github.com/jetbrains/kotlinconf-spinner
https://download.jetbrains.com/kotlin/native/kotlin-native-samples-1.0.1.tar.gz
https://download.jetbrains.com/kotlin/native/kotlin-native-samples-1.0.1.zip
https://github.com/JetBrains/kotlin-examples

Asynchronous or non-blocking programming is the new reality. Whether we're creating server-
side, desktop or mobile applications, it's important that we provide an experience that is not only

uid from the user's perspective, but scalable when needed.

There are many approaches to this problem, and in Kotlin we take a very exible one by
providing Coroutine support at the language level and delegating most of the functionality to
libraries, much in line with Kotlin's philosophy.

As a bonus, coroutines not only open the doors to asynchronous programming, but also provide
a wealth of other possibilities such as concurrency, actors, etc.

Tutorials and Documentation

New to Kotlin? Take a look at the Getting Started page.

Selected documentation pages:

Coroutines Guide

Basics

Channels

Coroutine Context and Dispatchers

Shared Mutable State and Concurrency

Recommended tutorials:

Your rst coroutine with Kotlin

Asynchronous Programming

Introduction to Coroutines and Channels hands-on lab

Example Projects

kotlinx.coroutines Examples and Sources

KotlinConf app

Even more examples are on GitHub

Coroutines for asynchronous programming and more

How to Start

—

—

—

—

—

—

—

—

—

—

15

https://en.wikipedia.org/wiki/Coroutine
https://play.kotlinlang.org/hands-on/Introduction to Coroutines and Channels/01_Introduction
https://github.com/Kotlin/kotlin-coroutines/tree/master/examples
https://github.com/JetBrains/kotlinconf-app
https://github.com/JetBrains/kotlin-examples

Multiplatform projects are an experimental feature in Kotlin 1.2 and 1.3. All of the
language and tooling features described in this document are subject to change in future
Kotlin versions.

Working on all platforms is an explicit goal for Kotlin, but we see it as a premise to a much more
important goal: sharing code between platforms. With support for JVM, Android, JavaScript, iOS,
Linux, Windows, Mac and even embedded systems like STM32, Kotlin can handle any and all
components of a modern application. And this brings the invaluable bene t of reuse for code
and expertise, saving the e ort for tasks more challenging than implementing everything twice or
multiple times.

Overall, multiplatform is not about compiling all code for all platforms. This model has its obvious
limitations, and we understand that modern applications need access to unique features of the
platforms they are running on. Kotlin doesn't limit you to the common subset of all APIs in the
world. Every component can share as much code as needed with others but can access platform
APIs at any time through the expect/actual mechanism provided by the language.

Here's an example of code sharing and interaction between the common and platform logic in a
minimalistic logging framework. The common code would look like this:

enum class LogLevel {
 DEBUG, WARN, ERROR
}

internal expect fun writeLogMessage(message: String, logLevel: LogLevel)

fun logDebug(message: String) = writeLogMessage(message, LogLevel.DEBUG)
fun logWarn(message: String) = writeLogMessage(message, LogLevel.WARN)
fun logError(message: String) = writeLogMessage(message, LogLevel.ERROR)

├ compiled for all platforms

├ expected platform-specific API

├ expected API can be used in the common code

It expects the targets to provide platform-speci c implementations for writeLogMessage , and

the common code can now use this declaration without any consideration of how it is
implemented.

On the JVM, one could provide an implementation that writes the log to the standard output:

internal actual fun writeLogMessage(message: String, logLevel: LogLevel) {
 println("[$logLevel]: $message")
}

Multiplatform Programming

How it works

16

In the JavaScript world, a completely di erent set of APIs is availiable, so one could instead
implement logging to the console:

internal actual fun writeLogMessage(message: String, logLevel: LogLevel) {
 when (logLevel) {
 LogLevel.DEBUG -> console.log(message)
 LogLevel.WARN -> console.warn(message)
 LogLevel.ERROR -> console.error(message)
 }
}

In 1.3 we reworked the entire multiplatform model. The new DSL we have for describing
multiplatform Gradle projects is much more exible, and we'll keep working on it to make project
con guration straightforward.

Common code can rely on a set of libraries that cover everyday tasks such as HTTP, serialization,
and managing coroutines. Also, an extensive standard library is available on all platforms.

You can always write your own library providing a common API and implementing it di erently
on every platform.

Sharing code between mobile platforms is one of the major Kotlin Multiplatform use cases, and it
is now possible to build mobile applications with parts of the code, such as business logic,
connectivity, and more, shared between Android and iOS.

See: Multiplatform Project: iOS and Android

Another scenario when code sharing may bring bene ts is a connected application where the
logic may be reused on both the server and the client side running in the browser. This is
covered by Kotlin Multiplatform as well.

The Ktor framework is suitable for building asynchronous servers and clients in connected
systems.

Tutorials and Documentation

New to Kotlin? Take a look at the Getting Started page.

Suggested documentation pages:

Multiplatform Libraries

Use cases

Android — iOS

Client — Server

How to start

17

http://ktor.io/clients/http-client/multiplatform.html
https://github.com/Kotlin/kotlinx.serialization
https://github.com/Kotlin/kotlinx.coroutines
https://ktor.io/

Setting up a Multiplatform Project

Platform-Speci c Declarations

Recommended tutorials:

Multiplatform Kotlin Library

Multiplatform Project: iOS and Android

Example Projects

KotlinConf app

KotlinConf Spinner app

Even more examples are on GitHub

—

—

—

—

—

—

18

https://github.com/JetBrains/kotlinconf-app
https://github.com/jetbrains/kotlinconf-spinner
https://github.com/JetBrains/kotlin-examples

Coroutines

Other language features

Standard library

JVM backend

JavaScript backend

Starting with Kotlin 1.1, the JavaScript target is no longer considered experimental. All language
features are supported, and there are many new tools for integration with the front-end
development environment. See below for a more detailed list of changes.

The key new feature in Kotlin 1.1 is coroutines, bringing the support of async / await , yield

and similar programming patterns. The key feature of Kotlin's design is that the implementation
of coroutine execution is part of the libraries, not the language, so you aren't bound to any
speci c programming paradigm or concurrency library.

A coroutine is e ectively a light-weight thread that can be suspended and resumed later.
Coroutines are supported through suspending functions: a call to such a function can potentially
suspend a coroutine, and to start a new coroutine we usually use an anonymous suspending
functions (i.e. suspending lambdas).

Let's look at async / await which is implemented in an external library, kotlinx.coroutines:

// runs the code in the background thread pool
fun asyncOverlay() = async(CommonPool) {
 // start two async operations
 val original = asyncLoadImage("original")
 val overlay = asyncLoadImage("overlay")
 // and then apply overlay to both results
 applyOverlay(original.await(), overlay.await())
}

// launches new coroutine in UI context
launch(UI) {
 // wait for async overlay to complete
 val image = asyncOverlay().await()
 // and then show it in UI
 showImage(image)
}

Here, async { ... } starts a coroutine and, when we use await() , the execution of the

coroutine is suspended while the operation being awaited is executed, and is resumed (possibly
on a di erent thread) when the operation being awaited completes.

What's New in Kotlin 1.1

Table of Contents
—

—

—

—

—

JavaScript

Coroutines (experimental)

19

https://github.com/kotlin/kotlinx.coroutines

The standard library uses coroutines to support lazily generated sequences with yield and

yieldAll functions. In such a sequence, the block of code that returns sequence elements is

suspended after each element has been retrieved, and resumed when the next element is
requested. Here's an example:

val seq = buildSequence {
 for (i in 1..5) {
 // yield a square of i
 yield(i * i)
 }
 // yield a range
 yieldAll(26..28)
}

// print the sequence
intln(seq.toList())

Run the code above to see the result. Feel free to edit it and run again!

For more information, please refer to the coroutine documentation and tutorial.

Note that coroutines are currently considered an experimental feature, meaning that the Kotlin
team is not committing to supporting the backwards compatibility of this feature after the nal
1.1 release.

A type alias allows you to de ne an alternative name for an existing type. This is most useful for
generic types such as collections, as well as for function types. Here is an example:

typealias OscarWinners = Map<String, String>

fun countLaLaLand(oscarWinners: OscarWinners) =
 oscarWinners.count { it.value.contains("La La Land") }

// Note that the type names (initial and the type alias) are interchangeable:
fun checkLaLaLandIsTheBestMovie(oscarWinners: Map<String, String>) =
 oscarWinners["Best picture"] == "La La Land"

See the documentation and KEEP for more details.

You can now use the :: operator to get a member reference pointing to a method or property

of a speci c object instance. Previously this could only be expressed with a lambda. Here's an
example:

val numberRegex = "\\d+".toRegex()
val numbers = listOf("abc", "123", "456").filter(numberRegex::matches)

Other Language Features

Type aliases

Bound callable references

20

https://github.com/Kotlin/KEEP/blob/master/proposals/type-aliases.md

Read the documentation and KEEP for more details.

Kotlin 1.1 removes some of the restrictions on sealed and data classes that were present in Kotlin
1.0. Now you can de ne subclasses of a top-level sealed class on the top level in the same le,
and not just as nested classes of the sealed class. Data classes can now extend other classes. This
can be used to de ne a hierarchy of expression classes nicely and cleanly:

sealed class Expr

data class Const(val number: Double) : Expr()
data class Sum(val e1: Expr, val e2: Expr) : Expr()
object NotANumber : Expr()

fun eval(expr: Expr): Double = when (expr) {
 is Const -> expr.number
 is Sum -> eval(expr.e1) + eval(expr.e2)
 NotANumber -> Double.NaN
}
val e = eval(Sum(Const(1.0), Const(2.0)))

Read the documentation or sealed class and data class KEEPs for more detail.

You can now use the destructuring declaration syntax to unpack the arguments passed to a
lambda. Here's an example:

val map = mapOf(1 to "one", 2 to "two")
// before
println(map.mapValues { entry ->
 val (key, value) = entry
 "$key -> $value!"
})
// now
println(map.mapValues { (key, value) -> "$key -> $value!" })

Read the documentation and KEEP for more details.

For a lambda with multiple parameters, you can use the _ character to replace the names of the

parameters you don't use:

map.forEach { _, value -> println("$value!") }

This also works in destructuring declarations:

val (_, status) = getResult()

Read the KEEP for more details.

Sealed and data classes

Destructuring in lambdas

Underscores for unused parameters

21

https://github.com/Kotlin/KEEP/blob/master/proposals/bound-callable-references.md
https://github.com/Kotlin/KEEP/blob/master/proposals/sealed-class-inheritance.md
https://github.com/Kotlin/KEEP/blob/master/proposals/data-class-inheritance.md
https://github.com/Kotlin/KEEP/blob/master/proposals/destructuring-in-parameters.md
https://github.com/Kotlin/KEEP/blob/master/proposals/underscore-for-unused-parameters.md

Just as in Java 8, Kotlin now allows to use underscores in numeric literals to separate groups of
digits:

val oneMillion = 1_000_000
val hexBytes = 0xFF_EC_DE_5E
val bytes = 0b11010010_01101001_10010100_10010010

Read the KEEP for more details.

For properties with the getter de ned as an expression body, the property type can now be
omitted:

data class Person(val name: String, val age: Int) {
val isAdult get() = age >= 20 // Property type inferred to be 'Boolean'

You can now mark property accessors with the inline modi er if the properties don't have a

backing eld. Such accessors are compiled in the same way as inline functions.

public val <T> List<T>.lastIndex: Int
 inline get() = this.size - 1

You can also mark the entire property as inline - then the modi er is applied to both

accessors.

Read the documentation and KEEP for more details.

You can now use the delegated property syntax with local variables. One possible use is de ning
a lazily evaluated local variable:

val answer by lazy {
 println("Calculating the answer...")
 42
}
if (needAnswer()) { // returns the random value
 println("The answer is $answer.") // answer is calculated at this point
}
else {
 println("Sometimes no answer is the answer...")
}

Read the KEEP for more details.

Underscores in numeric literals

Shorter syntax for properties

Inline property accessors

Local delegated properties

22

https://github.com/Kotlin/KEEP/blob/master/proposals/underscores-in-numeric-literals.md
https://github.com/Kotlin/KEEP/blob/master/proposals/inline-properties.md
https://github.com/Kotlin/KEEP/blob/master/proposals/local-delegated-properties.md

For delegated properties, it is now possible to intercept delegate to property binding using the
provideDelegate operator. For example, if we want to check the property name before

binding, we can write something like this:

class ResourceLoader<T>(id: ResourceID<T>) {
 operator fun provideDelegate(thisRef: MyUI, prop: KProperty<*>):
ReadOnlyProperty<MyUI, T> {
 checkProperty(thisRef, prop.name)
 ... // property creation
 }

 private fun checkProperty(thisRef: MyUI, name: String) { ... }
}

fun <T> bindResource(id: ResourceID<T>): ResourceLoader<T> { ... }

class MyUI {
 val image by bindResource(ResourceID.image_id)
 val text by bindResource(ResourceID.text_id)
}

The provideDelegate method will be called for each property during the creation of a MyUI

instance, and it can perform the necessary validation right away.

Read the documentation for more details.

It is now possible to enumerate the values of an enum class in a generic way.

enum class RGB { RED, GREEN, BLUE }

inline fun <reified T : Enum<T>> printAllValues() {
 print(enumValues<T>().joinToString { it.name })
}

The @DslMarker annotation allows to restrict the use of receivers from outer scopes in a DSL

context. Consider the canonical HTML builder example:

table {
 tr {
 td { + "Text" }
 }
}

In Kotlin 1.0, code in the lambda passed to td has access to three implicit receivers: the one

passed to table , to tr and to td . This allows you to call methods that make no sense in the

context - for example to call tr inside td and thus to put a <tr> tag in a <td> .

Interception of delegated property binding

Generic enum value access

Scope control for implicit receivers in DSLs

23

In Kotlin 1.1, you can restrict that, so that only methods de ned on the implicit receiver of td

will be available inside the lambda passed to td . You do that by de ning your annotation

marked with the @DslMarker meta-annotation and applying it to the base class of the tag

classes.

Read the documentation and KEEP for more details.

The mod operator is now deprecated, and rem is used instead. See this issue for motivation.

There is a bunch of new extensions on the String class to convert it to a number without throwing
an exception on invalid number: String.toIntOrNull(): Int? ,

String.toDoubleOrNull(): Double? etc.

val port = System.getenv("PORT")?.toIntOrNull() ?: 80

Also integer conversion functions, like Int.toString() , String.toInt() ,

String.toIntOrNull() , each got an overload with radix parameter, which allows to specify

the base of conversion (2 to 36).

onEach is a small, but useful extension function for collections and sequences, which allows to

perform some action, possibly with side-e ects, on each element of the collection/sequence in a
chain of operations. On iterables it behaves like forEach but also returns the iterable instance

further. And on sequences it returns a wrapping sequence, which applies the given action lazily
as the elements are being iterated.

inputDir.walk()
 .filter { it.isFile && it.name.endsWith(".txt") }
 .onEach { println("Moving $it to $outputDir") }
 .forEach { moveFile(it, File(outputDir, it.toRelativeString(inputDir))) }

These are three general-purpose extension functions applicable to any receiver.

also is like apply : it takes the receiver, does some action on it, and returns that receiver. The

di erence is that in the block inside apply the receiver is available as this , while in the block

inside also it's available as it (and you can give it another name if you want). This comes

handy when you do not want to shadow this from the outer scope:

rem operator

Standard library

String to number conversions

onEach()

also(), takeIf() and takeUnless()

24

https://github.com/Kotlin/KEEP/blob/master/proposals/scope-control-for-implicit-receivers.md
https://youtrack.jetbrains.com/issue/KT-14650

fun Block.copy() = Block().also {
 it.content = this.content
}

takeIf is like filter for a single value. It checks whether the receiver meets the predicate,

and returns the receiver, if it does or null if it doesn't. Combined with an elvis-operator and

early returns it allows to write constructs like:

val outDirFile = File(outputDir.path).takeIf { it.exists() } ?: return false
// do something with existing outDirFile

val index = input.indexOf(keyword).takeIf { it >= 0 } ?: error("keyword not found")
// do something with index of keyword in input string, given that it's found

takeUnless is the same as takeIf , but it takes the inverted predicate. It returns the receiver

when it doesn't meet the predicate and null otherwise. So one of the examples above could be

rewritten with takeUnless as following:

val index = input.indexOf(keyword).takeUnless { it < 0 } ?: error("keyword not found")

It is also convenient to use when you have a callable reference instead of the lambda:

val result = string.takeUnless(String::isEmpty)

This API can be used to group a collection by key and fold each group simultaneously. For
example, it can be used to count the number of words starting with each letter:

val frequencies = words.groupingBy { it.first() }.eachCount()

These functions can be used for easy copying of maps:

class ImmutablePropertyBag(map: Map<String, Any>) {
 private val mapCopy = map.toMap()
}

The operator plus provides a way to add key-value pair(s) to a read-only map producing a new

map, however there was not a simple way to do the opposite: to remove a key from the map you
have to resort to less straightforward ways to like Map.filter() or Map.filterKeys() .

Now the operator minus lls this gap. There are 4 overloads available: for removing a single

key, a collection of keys, a sequence of keys and an array of keys.

groupingBy()

Map.toMap() and Map.toMutableMap()

Map.minus(key)

25

val map = mapOf("key" to 42)
val emptyMap = map - "key"

These functions can be used to nd the lowest and greatest of two or three given values, where
values are primitive numbers or Comparable objects. There is also an overload of each function

that take an additional Comparator instance, if you want to compare objects that are not

comparable themselves.

val list1 = listOf("a", "b")
val list2 = listOf("x", "y", "z")
val minSize = minOf(list1.size, list2.size)
val longestList = maxOf(list1, list2, compareBy { it.size })

Similar to the Array constructor, there are now functions that create List and MutableList

instances and initialize each element by calling a lambda:

val squares = List(10) { index -> index * index }
val mutable = MutableList(10) { 0 }

This extension on Map returns an existing value corresponding to the given key or throws an

exception, mentioning which key was not found. If the map was produced with withDefault ,

this function will return the default value instead of throwing an exception.

val map = mapOf("key" to 42)
// returns non-nullable Int value 42
val value: Int = map.getValue("key")

val mapWithDefault = map.withDefault { k -> k.length }
// returns 4
val value2 = mapWithDefault.getValue("key2")

// map.getValue("anotherKey") // <- this will throw NoSuchElementException

These abstract classes can be used as base classes when implementing Kotlin collection classes.
For implementing read-only collections there are AbstractCollection , AbstractList ,

AbstractSet and AbstractMap , and for mutable collections there are

AbstractMutableCollection , AbstractMutableList , AbstractMutableSet and

AbstractMutableMap . On JVM these abstract mutable collections inherit most of their

functionality from JDK's abstract collections.

minOf() and maxOf()

Array-like List instantiation functions

Map.getValue()

Abstract collections

26

The standard library now provides a set of functions for element-by-element operations on
arrays: comparison (contentEquals and contentDeepEquals), hash code calculation

(contentHashCode and contentDeepHashCode), and conversion to a string

(contentToString and contentDeepToString). They're supported both for the JVM (where

they act as aliases for the corresponding functions in java.util.Arrays) and for JS (where the

implementation is provided in the Kotlin standard library).

val array = arrayOf("a", "b", "c")
println(array.toString()) // JVM implementation: type-and-hash gibberish
println(array.contentToString()) // nicely formatted as list

Kotlin has now the option of generating Java 8 bytecode (-jvm-target 1.8 command line

option or the corresponding options in Ant/Maven/Gradle). For now this doesn't change the
semantics of the bytecode (in particular, default methods in interfaces and lambdas are
generated exactly as in Kotlin 1.0), but we plan to make further use of this later.

There are now separate versions of the standard library supporting the new JDK APIs added in
Java 7 and 8. If you need access to the new APIs, use kotlin-stdlib-jre7 and kotlin-

stdlib-jre8 maven artifacts instead of the standard kotlin-stdlib . These artifacts are tiny

extensions on top of kotlin-stdlib and they bring it to your project as a transitive

dependency.

Kotlin now supports storing parameter names in the bytecode. This can be enabled using the -

java-parameters command line option.

The compiler now inlines values of const val properties into the locations where they are

used.

Array manipulation functions

JVM Backend

Java 8 bytecode support

Java 8 standard library support

Parameter names in the bytecode

Constant inlining

Mutable closure variables

27

The box classes used for capturing mutable closure variables in lambdas no longer have volatile
elds. This change improves performance, but can lead to new race conditions in some rare

usage scenarios. If you're a ected by this, you need to provide your own synchronization for
accessing the variables.

Kotlin now integrates with the javax.script API (JSR-223). The API allows to evaluate snippets of
code at runtime:

val engine = ScriptEngineManager().getEngineByExtension("kts")!!
engine.eval("val x = 3")
println(engine.eval("x + 2")) // Prints out 5

See here for a larger example project using the API.

To prepare for Java 9 support, the extension functions and properties in the kotlin-

reflect.jar library have been moved to the package kotlin.reflect.full . The names in

the old package (kotlin.reflect) are deprecated and will be removed in Kotlin 1.2. Note that

the core re ection interfaces (such as KClass) are part of the Kotlin standard library, not

kotlin-reflect , and are not a ected by the move.

A much larger part of the Kotlin standard library can now be used from code compiled to
JavaScript. In particular, key classes such as collections (ArrayList , HashMap etc.), exceptions

(IllegalArgumentException etc.) and a few others (StringBuilder , Comparator) are

now de ned under the kotlin package. On the JVM, the names are type aliases for the

corresponding JDK classes, and on the JS, the classes are implemented in the Kotlin standard
library.

JavaScript backend now generates more statically checkable code, which is friendlier to JS code
processing tools, like mini ers, optimisers, linters, etc.

javax.script support

kotlin.re ect.full

JavaScript Backend

Uni ed standard library

Better code generation

The external modi er

28

https://docs.oracle.com/javase/8/docs/api/javax/script/package-summary.html
https://github.com/JetBrains/kotlin/tree/master/libraries/examples/kotlin-jsr223-local-example
https://blog.jetbrains.com/kotlin/2017/01/kotlin-1-1-whats-coming-in-the-standard-library/

If you need to access a class implemented in JavaScript from Kotlin in a typesafe way, you can
write a Kotlin declaration using the external modi er. (In Kotlin 1.0, the @native annotation

was used instead.) Unlike the JVM target, the JS one permits to use external modi er with classes
and properties. For example, here's how you can declare the DOM Node class:

external class Node {
 val firstChild: Node

 fun appendChild(child: Node): Node

 fun removeChild(child: Node): Node

 // etc
}

You can now describe declarations which should be imported from JavaScript modules more
precisely. If you add the @JsModule("<module-name>") annotation on an external

declaration it will be properly imported to a module system (either CommonJS or AMD) during
the compilation. For example, with CommonJS the declaration will be imported via
require(...) function. Additionally, if you want to import a declaration either as a module or

as a global JavaScript object, you can use the @JsNonModule annotation.

For example, here's how you can import JQuery into a Kotlin module:

external interface JQuery {
 fun toggle(duration: Int = definedExternally): JQuery
 fun click(handler: (Event) -> Unit): JQuery
}

@JsModule("jquery")
@JsNonModule
@JsName("$")
external fun jquery(selector: String): JQuery

In this case, JQuery will be imported as a module named jquery . Alternatively, it can be used as

a $-object, depending on what module system Kotlin compiler is con gured to use.

You can use these declarations in your application like this:

fun main(args: Array<String>) {
 jquery(".toggle-button").click {
 jquery(".toggle-panel").toggle(300)
 }
}

Improved import handling

29

Multiplatform projects

Other language features

Standard library

JVM backend

JavaScript backend

Multiplatform projects are a new experimental feature in Kotlin 1.2, allowing you to reuse code
between target platforms supported by Kotlin – JVM, JavaScript and (in the future) Native. In a
multiplatform project, you have three kinds of modules:

A common module contains code that is not speci c to any platform, as well as declarations
without implementation of platform-dependent APIs.

A platform module contains implementations of platform-dependent declarations in the
common module for a speci c platform, as well as other platform-dependent code.

A regular module targets a speci c platform and can either be a dependency of platform
modules or depend on platform modules.

When you compile a multiplatform project for a speci c platform, the code for both the common
and platform-speci c parts is generated.

A key feature of the multiplatform project support is the possibility to express dependencies of
common code on platform-speci c parts through expected and actual declarations. An
expected declaration speci es an API (class, interface, annotation, top-level declaration etc.). An
actual declaration is either a platform-dependent implementation of the API or a typealias
referring to an existing implementation of the API in an external library. Here's an example:

In common code:

// expected platform-specific API:
expect fun hello(world: String): String

fun greet() {
 // usage of the expected API:
 val greeting = hello("multi-platform world")
 println(greeting)
}

expect class URL(spec: String) {
 open fun getHost(): String
 open fun getPath(): String
}

In JVM platform code:

What's New in Kotlin 1.2

Table of Contents
—

—

—

—

—

Multiplatform Projects (experimental)

—

—

—

30

actual fun hello(world: String): String =
 "Hello, $world, on the JVM platform!"

// using existing platform-specific implementation:
actual typealias URL = java.net.URL

See the documentation for details and steps to build a multiplatform project.

Starting with Kotlin 1.2, array arguments for annotations can be passed with the new array literal
syntax instead of the arrayOf function:

@CacheConfig(cacheNames = ["books", "default"])
public class BookRepositoryImpl {
 // ...
}

The array literal syntax is constrained to annotation arguments.

The lateinit modi er can now be used on top-level properties and local variables. The latter

can be used, for example, when a lambda passed as a constructor argument to one object refers
to another object which has to be de ned later:

class Node<T>(val value: T, val next: () -> Node<T>)

fun main(args: Array<String>) {
 // A cycle of three nodes:
 lateinit var third: Node<Int>

 val second = Node(2, next = { third })
 val first = Node(1, next = { second })

 third = Node(3, next = { first })

 val nodes = generateSequence(first) { it.next() }
 println("Values in the cycle: ${nodes.take(7).joinToString { it.value.toString() }},
...")
}

You can now check whether a lateinit var has been initialized using isInitialized on the

property reference:

 println("isInitialized before assignment: " + this::lateinitVar.isInitialized)
 lateinitVar = "value"
 println("isInitialized after assignment: " + this::lateinitVar.isInitialized)

Other Language Features

Array literals in annotations

Lateinit top-level properties and local variables

Checking whether a lateinit var is initialized

31

http://kotlinlang.org/docs/reference/multiplatform.html

Inline functions are now allowed to have default values for their inlined functional parameters:

inline fun <E> Iterable<E>.strings(transform: (E) -> String = { it.toString() }) =
 map { transform(it) }

val defaultStrings = listOf(1, 2, 3).strings()
val customStrings = listOf(1, 2, 3).strings { "($it)" }

The Kotlin compiler can now use information from type casts in type inference. If you’re calling a
generic method that returns a type parameter T and casting the return value to a speci c type

Foo , the compiler now understands that T for this call needs to be bound to the type Foo .

This is particularly important for Android developers, since the compiler can now correctly
analyze generic findViewById calls in Android API level 26:

val button = findViewById(R.id.button) as Button

When a variable is assigned from a safe call expression and checked for null, the smart cast is
now applied to the safe call receiver as well:

val firstChar = (s as? CharSequence)?.firstOrNull()
if (firstChar != null)
return s.count { it == firstChar } // s: Any is smart cast to CharSequence

val firstItem = (s as? Iterable<*>)?.firstOrNull()
if (firstItem != null)
return s.count { it == firstItem } // s: Any is smart cast to Iterable<*>

Also, smart casts in a lambda are now allowed for local variables that are only modi ed before
the lambda:

val flag = args.size == 0
var x: String? = null
if (flag) x = "Yahoo!"

run {
 if (x != null) {
 println(x.length) // x is smart cast to String
 }
}

Inline functions with default functional parameters

Information from explicit casts is used for type inference

Smart cast improvements

Support for ::foo as a shorthand for this::foo

32

A bound callable reference to a member of this can now be written without explicit receiver,

::foo instead of this::foo . This also makes callable references more convenient to use in

lambdas where you refer to a member of the outer receiver.

Earlier, Kotlin used assignments made inside a try block for smart casts after the block, which

could break type- and null-safety and lead to runtime failures. This release xes this issue,
making the smart casts more strict, but breaking some code that relied on such smart casts.

To switch to the old smart casts behavior, pass the fallback ag -Xlegacy-smart-cast-

after-try as the compiler argument. It will become deprecated in Kotlin 1.3.

When a data class derived from a type that already had the copy function with the same

signature, the copy implementation generated for the data class used the defaults from the

supertype, leading to counter-intuitive behavior, or failed at runtime if there were no default
parameters in the supertype.

Inheritance that leads to a copy con ict has become deprecated with a warning in Kotlin 1.2 and

will be an error in Kotlin 1.3.

Inside enum entries, de ning a nested type that is not an inner class has been deprecated

due to issues in the initialization logic. This causes a warning in Kotlin 1.2 and will become an
error in Kotlin 1.3.

For consistency with array literals in annotations, passing a single item for a vararg parameter in
the named form (foo(items = i)) has been deprecated. Please use the spread operator with

the corresponding array factory functions:

foo(items = *intArrayOf(1))

There is an optimization that removes redundant arrays creation in such cases, which prevents
performance degradation. The single-argument form produces warnings in Kotlin 1.2 and is to be
dropped in Kotlin 1.3.

Breaking change: sound smart casts after try blocks

Deprecation: data classes overriding copy

Deprecation: nested types in enum entries

Deprecation: single named argument for vararg

Deprecation: inner classes of generic classes extending Throwable

33

Inner classes of generic types that inherit from Throwable could violate type-safety in a throw-

catch scenario and thus have been deprecated, with a warning in Kotlin 1.2 and an error in Kotlin
1.3.

Mutating the backing eld of a read-only property by assigning field = ... in the custom

getter has been deprecated, with a warning in Kotlin 1.2 and an error in Kotlin 1.3.

The Kotlin standard library is now fully compatible with the Java 9 module system, which forbids
split packages (multiple jar les declaring classes in the same package). In order to support that,
new artifacts kotlin-stdlib-jdk7 and kotlin-stdlib-jdk8 are introduced, which

replace the old kotlin-stdlib-jre7 and kotlin-stdlib-jre8 .

The declarations in the new artifacts are visible under the same package names from the Kotlin
point of view, but have di erent package names for Java. Therefore, switching to the new artifacts
will not require any changes to your source code.

Another change made to ensure compatibility with the new module system is removing the
deprecated declarations in the kotlin.reflect package from the kotlin-reflect library.

If you were using them, you need to switch to using the declarations in the
kotlin.reflect.full package, which is supported since Kotlin 1.1.

New extensions for Iterable<T> , Sequence<T> , and CharSequence cover such use cases

as bu ering or batch processing (chunked), sliding window and computing sliding average

(windowed) , and processing pairs of subsequent items (zipWithNext):

val items = (1..9).map { it * it }

val chunkedIntoLists = items.chunked(4)
val points3d = items.chunked(3) { (x, y, z) -> Triple(x, y, z) }
val windowed = items.windowed(4)
val slidingAverage = items.windowed(4) { it.average() }
val pairwiseDifferences = items.zipWithNext { a, b -> b - a }

A set of extension functions was added for manipulating lists: fill , replaceAll and

shuffle for MutableList , and shuffled for read-only List :

Deprecation: mutating backing eld of a read-only property

Standard Library

Kotlin standard library artifacts and split packages

windowed, chunked, zipWithNext

ll, replaceAll, shu e/shu ed

34

val items = (1..5).toMutableList()

items.shuffle()
println("Shuffled items: $items")

items.replaceAll { it * 2 }
println("Items doubled: $items")

items.fill(5)
println("Items filled with 5: $items")

Satisfying the longstanding request, Kotlin 1.2 adds the kotlin.math API for math operations

that is common for JVM and JS and contains the following:

Constants: PI and E ;

Trigonometric: cos , sin , tan and inverse of them: acos , asin , atan , atan2 ;

Hyperbolic: cosh , sinh , tanh and their inverse: acosh , asinh , atanh

Exponentation: pow (an extension function), sqrt , hypot , exp , expm1 ;

Logarithms: log , log2 , log10 , ln , ln1p ;

Rounding:

ceil , floor , truncate , round (half to even) functions;

roundToInt , roundToLong (half to integer) extension functions;

Sign and absolute value:

abs and sign functions;

absoluteValue and sign extension properties;

withSign extension function;

max and min of two values;

Binary representation:

ulp extension property;

nextUp , nextDown , nextTowards extension functions;

toBits , toRawBits , Double.fromBits (these are in the kotlin package).

The same set of functions (but without constants) is also available for Float arguments.

Kotlin 1.2 introduces a set of functions for operating with BigInteger and BigDecimal and

creating them from other numeric types. These are:

Math operations in kotlin-stdlib

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

Operators and conversions for BigInteger and BigDecimal

35

toBigInteger for Int and Long ;

toBigDecimal for Int , Long , Float , Double , and BigInteger ;

Arithmetic and bitwise operator functions:

Binary operators + , - , * , / , % and in x functions and , or , xor , shl , shr ;

Unary operators - , ++ , -- , and a function inv .

New functions were added for converting Double and Float to and from their bit

representations:

toBits and toRawBits returning Long for Double and Int for Float ;

Double.fromBits and Float.fromBits for creating oating point numbers from the bit

representation.

The kotlin.text.Regex class has become Serializable and can now be used in

serializable hierarchies.

The Closeable.use function calls Throwable.addSuppressed when an exception is thrown

during closing the resource after some other exception.

To enable this behavior you need to have kotlin-stdlib-jdk7 in your dependencies.

Ever since version 1.0, Kotlin supported expressions with complex control ow, such as try-catch
expressions and inline function calls. Such code is valid according to the Java Virtual Machine
speci cation. Unfortunately, some bytecode processing tools do not handle such code quite well
when such expressions are present in the arguments of constructor calls.

To mitigate this problem for the users of such bytecode processing tools, we’ve added a
command-line option (-Xnormalize-constructor-calls=MODE) that tells the compiler to

generate more Java-like bytecode for such constructs. Here MODE is one of:

disable (default) – generate bytecode in the same way as in Kotlin 1.0 and 1.1;

enable – generate Java-like bytecode for constructor calls. This can change the order in

which the classes are loaded and initialized;

—

—

—

—

—

Floating point to bits conversions

—

—

Regex is now serializable

Closeable.use calls Throwable.addSuppressed if available

JVM Backend

Constructor calls normalization

—

—

36

preserve-class-initialization – generate Java-like bytecode for constructor calls,

ensuring that the class initialization order is preserved. This can a ect overall performance of
your application; use it only if you have some complex state shared between multiple classes
and updated on class initialization.

The “manual” workaround is to store the values of sub-expressions with control ow in variables,
instead of evaluating them directly inside the call arguments. It’s similar to -Xnormalize-

constructor-calls=enable .

Before Kotlin 1.2, interface members overriding Java-default methods while targeting JVM 1.6
produced a warning on super calls: Super calls to Java default methods are

deprecated in JVM target 1.6. Recompile with '-jvm-target 1.8' . In Kotlin 1.2,

there's an error instead, thus requiring any such code to be compiled with JVM target 1.8.

Calling x.equals(null) on a platform type that is mapped to a Java primitive (Int! ,

Boolean! , Short !, Long! , Float! , Double! , Char!) incorrectly returned true when x

was null. Starting with Kotlin 1.2, calling x.equals(...) on a null value of a platform type

throws an NPE (but x == ... does not).

To return to the pre-1.2 behavior, pass the ag -Xno-exception-on-explicit-equals-

for-boxed-null to the compiler.

Inline extension functions that were called on a null value of a platform type did not check the
receiver for null and would thus allow null to escape into the other code. Kotlin 1.2 forces this
check at the call sites, throwing an exception if the receiver is null.

To switch to the old behavior, pass the fallback ag -Xno-receiver-assertions to the

compiler.

The JS typed arrays support that translates Kotlin primitive arrays, such as IntArray ,

DoubleArray , into JavaScript typed arrays, that was previously an opt-in feature, has been

enabled by default.

—

Java-default method calls

Breaking change: consistent behavior of x.equals(null) for platform types

Breaking change: x for platform null escaping through an inlined extension
receiver

JavaScript Backend

TypedArrays support enabled by default

37

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays

The compiler now provides an option to treat all warnings as errors. Use -Werror on the

command line, or the following Gradle snippet:

compileKotlin {
 kotlinOptions.allWarningsAsErrors = true
}

Tools

Warnings as errors

38

After some long and extensive battle testing, coroutines are now released! It means that from
Kotlin 1.3 the language support and the API are fully stable. Check out the new coroutines
overview page.

Kotlin 1.3 introduces callable references on suspend-functions and support of Coroutines in the
Re ection API.

Kotlin 1.3 continues to improve and polish the Native target. See the Kotlin/Native overview for
details.

In 1.3, we've completely reworked the model of multiplatform projects in order to improve
expressiveness and exibility, and to make sharing common code easier. Also, Kotlin/Native is
now supported as one of the targets!

The key di erences to the old model are:

In the old model, common and platform-speci c code needed to be placed in separate
modules, linked by expectedBy dependencies. Now, common and platform-speci c code is

placed in di erent source roots of the same module, making projects easier to con gure.

There is now a large number of preset platform con gurations for di erent supported
platforms.

The dependencies con guration has been changed; dependencies are now speci ed
separately for each source root.

Source sets can now be shared between an arbitrary subset of platforms (for example, in a
module that targets JS, Android and iOS, you can have a source set that is shared only
between Android and iOS).

Publishing multiplatform libraries is now supported.

For more information, please refer to the Multiplatform Programming documentation.

The Kotlin compiler does extensive static analysis to provide warnings and reduce boilerplate.
One of the most notable features is smartcasts — with the ability to perform a cast automatically
based on the performed type checks:

fun foo(s: String?) {
 if (s != null) s.length // Compiler automatically casts 's' to 'String'
}

What's New in Kotlin 1.3

Coroutines release

Kotlin/Native

Multiplatform Projects

—

—

—

—

—

Contracts

39

However, as soon as these checks are extracted in a separate function, all the smartcasts
immediately disappear:

fun String?.isNotNull(): Boolean = this != null

fun foo(s: String?) {
 if (s.isNotNull()) s.length // No smartcast :(
}

To improve the behavior in such cases, Kotlin 1.3 introduces experimental mechanism called
contracts.

Contracts allow a function to explicitly describe its behavior in a way which is understood by the
compiler. Currently, two wide classes of cases are supported:

Improving smartcasts analysis by declaring the relation between a function's call outcome and
the passed arguments values:

fun require(condition: Boolean) {
 // This is a syntax form, which tells compiler:
 // "if this function returns successfully, then passed 'condition' is true"
 contract { returns() implies condition }
 if (!condition) throw IllegalArgumentException(...)
}

fun foo(s: String?) {
 require(s is String)
 // s is smartcasted to 'String' here, because otherwise
 // 'require' would have throw an exception
}

Improving the variable initialization analysis in the presence of high-order functions:

fun synchronize(lock: Any?, block: () -> Unit) {
 // It tells compiler:
 // "This function will invoke 'block' here and now, and exactly one time"
 contract { callsInPlace(block, EXACTLY_ONCE) }
}

fun foo() {
 val x: Int
 synchronize(lock) {
 x = 42 // Compiler knows that lambda passed to 'synchronize' is called
 // exactly once, so no reassignment is reported
 }
 println(x) // Compiler knows that lambda will be definitely called, performing
 // initialization, so 'x' is considered to be initialized here
}

stdlib already makes use of contracts, which leads to improvements in the analyses described

above. This part of contracts is stable, meaning that you can bene t from the improved analysis
right now without any additional opt-ins:

—

—

Contracts in stdlib

40

fun bar(x: String?) {
 if (!x.isNullOrEmpty()) {
 println("length of '$x' is ${x.length}") // Yay, smartcasted to not-null!
 }
}

It is possible to declare contracts for your own functions, but this feature is experimental, as the
current syntax is in a state of early prototype and will most probably be changed. Also, please
note, that currently the Kotlin compiler does not verify contracts, so it's a programmer's
responsibility to write correct and sound contracts.

Custom contracts are introduced by the call to contract stdlib function, which provides DSL

scope:

fun String?.isNullOrEmpty(): Boolean {
 contract {
 returns(false) implies (this@isNullOrEmpty != null)
 }
 return this == null || isEmpty()
}

See the details on the syntax as well as the compatibility notice in the KEEP.

In Kotlin 1.3, it is now possible to capture the when subject into variable:

fun Request.getBody() =
 when (val response = executeRequest()) {
 is Success -> response.body
 is HttpError -> throw HttpException(response.status)
 }

While it was already possible to extract this variable just before when , val in when has its

scope properly restricted to the body of when , and so preventing namespace pollution. See the

full documentation on when here.

With Kotlin 1.3, it is possible to mark members of a companion object of interfaces with

annotations @JvmStatic and @JvmField . In the class le, such members will be lifted to the

corresponding interface and marked as static .

For example, the following Kotlin code:

Custom Contracts

Capturing when subject in a variable

@JvmStatic and @JvmField in companion of interfaces

41

https://github.com/Kotlin/KEEP/blob/master/proposals/kotlin-contracts.md

interface Foo {
 companion object {
 @JvmField
 val answer: Int = 42

 @JvmStatic
 fun sayHello() {
 println("Hello, world!")
 }
 }
}

It is equivalent to this Java code:

interface Foo {
 public static int answer = 42;
 public static void sayHello() {
 // ...
 }
}

In Kotlin 1.3 it is possible for annotations to have nested classes, interfaces, objects, and
companions:

annotation class Foo {
 enum class Direction { UP, DOWN, LEFT, RIGHT }

 annotation class Bar

 companion object {
 fun foo(): Int = 42
 val bar: Int = 42
 }
}

By convention, the entry point of a Kotlin program is a function with a signature like
main(args: Array<String>) , where args represent the command-line arguments passed

to the program. However, not every application supports command-line arguments, so this
parameter often ends up not being used.

Kotlin 1.3 introduced a simpler form of main which takes no parameters. Now “Hello, World” in

Kotlin is 19 characters shorter!

fun main() {
 println("Hello, world!")
}

Nested declarations in annotation classes

Parameterless main

Functions with big arity

42

In Kotlin, functional types are represented as generic classes taking a di erent number of
parameters: Function0<R> , Function1<P0, R> , Function2<P0, P1, R> , … This

approach has a problem in that this list is nite, and it currently ends with Function22 .

Kotlin 1.3 relaxes this limitation and adds support for functions with bigger arity:

fun trueEnterpriseComesToKotlin(block: (Any, Any, ... /* 42 more */, Any) -> Any) {
 block(Any(), Any(), ..., Any())
}

Kotlin cares a lot about stability and backward compatibility of code: Kotlin compatibility policy
says that "breaking changes" (e.g., a change which makes the code that used to compile ne, not
compile anymore) can be introduced only in the major releases (1.2, 1.3, etc.).

We believe that a lot of users could use a much faster cycle, where critical compiler bug xes
arrive immediately, making the code more safe and correct. So, Kotlin 1.3 introduces progressive
compiler mode, which can be enabled by passing the argument -progressive to the compiler.

In progressive mode, some xes in language semantics can arrive immediately. All these xes
have two important properties:

they preserve backward-compatibility of source code with older compilers, meaning that all
the code which is compilable by the progressive compiler will be compiled ne by non-
progressive one.

they only make code safer in some sense — e.g., some unsound smartcast can be forbidden,
behavior of the generated code may be changed to be more predictable/stable, and so on.

Enabling the progressive mode can require you to rewrite some of your code, but it shouldn't be
too much — all the xes which are enabled under progressive are carefully handpicked,
reviewed, and provided with tooling migration assistance. We expect that the progressive mode
will be a nice choice for any actively maintained codebases which are updated to the latest
language versions quickly.

Inline classes are available only since Kotlin 1.3 and currently are experimental. See
details in the reference.

Kotlin 1.3 introduces a new kind of declaration — inline class . Inline classes can be viewed

as a restricted version of the usual classes, in particular, inline classes must have exactly one
property:

inline class Name(val s: String)

Progressive mode

—

—

Inline classes

43

The Kotlin compiler will use this restriction to aggressively optimize runtime representation of
inline classes and substitute their instances with the value of the underlying property where
possible removing constructor calls, GC pressure, and enabling other optimizations:

fun main() {
 // In the next line no constructor call happens, and
 // at the runtime 'name' contains just string "Kotlin"
 val name = Name("Kotlin")
 println(name.s)
}

See reference for inline classes for details.

Unsigned integers are available only since Kotlin 1.3 and currently are experimental. See
details in the reference.

Kotlin 1.3 introduces unsigned integer types:

kotlin.UByte : an unsigned 8-bit integer, ranges from 0 to 255

kotlin.UShort : an unsigned 16-bit integer, ranges from 0 to 65535

kotlin.UInt : an unsigned 32-bit integer, ranges from 0 to 2^32 - 1

kotlin.ULong : an unsigned 64-bit integer, ranges from 0 to 2^64 - 1

Most of the functionality of signed types are supported for unsigned counterparts too:

// You can define unsigned types using literal suffixes
val uint = 42u
val ulong = 42uL
val ubyte: UByte = 255u

// You can convert signed types to unsigned and vice versa via stdlib extensions:
val int = uint.toInt()
val byte = ubyte.toByte()
val ulong2 = byte.toULong()

// Unsigned types support similar operators:
val x = 20u + 22u
val y = 1u shl 8
val z = "128".toUByte()
val range = 1u..5u

See reference for details.

@JvmDefault is only available since Kotlin 1.3 and currently is experimental. See details

in the reference page.

Unsigned integers

—

—

—

—

@JvmDefault

44

Kotlin targets a wide range of the Java versions, including Java 6 and Java 7, where default
methods in the interfaces are not allowed. For your convenience, the Kotlin compiler works
around that limitation, but this workaround isn't compatible with the default methods,

introduced in Java 8.

This could be an issue for Java-interoperability, so Kotlin 1.3 introduces the @JvmDefault

annotation. Methods, annotated with this annotation will be generated as default methods for

JVM:

interface Foo {
 // Will be generated as 'default' method
 @JvmDefault
 fun foo(): Int = 42
}

Warning! Annotating your API with @JvmDefault has serious implications on binary

compatibility. Make sure to carefully read the reference page before using
@JvmDefault in production.

Prior to Kotlin 1.3, there was no uniform way to generate random numbers on all platforms —
we had to resort to platform speci c solutions, like java.util.Random on JVM. This release

xes this issue by introducing the class kotlin.random.Random , which is available on all

platforms:

val number = Random.nextInt(42) // number is in range [0, limit)
println(number)

isNullOrEmpty and orEmpty extensions for some types are already present in stdlib . The

rst one returns true if the receiver is null or empty, and the second one falls back to an

empty instance if the receiver is null . Kotlin 1.3 provides similar extensions on collections,

maps, and arrays of objects.

The array.copyInto(targetArray, targetOffset, startIndex, endIndex)

functions for the existing array types, including the unsigned arrays, make it easier to implement
array-based containers in pure Kotlin.

Standard library

Multiplatform Random

isNullOrEmpty/orEmpty extensions

Copying elements between two existing arrays

45

val sourceArr = arrayOf("k", "o", "t", "l", "i", "n")
val targetArr = sourceArr.copyInto(arrayOfNulls<String>(6), 3, startIndex = 3, endIndex =
6)
println(targetArr.contentToString())

sourceArr.copyInto(targetArr, startIndex = 0, endIndex = 3)
println(targetArr.contentToString())

It is quite a common situation to have a list of keys and want to build a map by associating each
of these keys with some value. It was possible to do it before with the associate { it to

getValue(it) } function, but now we’re introducing a more e cient and easy to explore

alternative: keys.associateWith { getValue(it) } .

val keys = 'a'..'f'
val map = keys.associateWith { it.toString().repeat(5).capitalize() }
map.forEach { println(it) }

Collections, maps, object arrays, char sequences, and sequences now have an ifEmpty function,

which allows specifying a fallback value that will be used instead of the receiver if it is empty:

fun printAllUppercase(data: List<String>) {
 val result = data
 .filter { it.all { c -> c.isUpperCase() } }
 .ifEmpty { listOf("<no uppercase>") }
 result.forEach { println(it) }
}

printAllUppercase(listOf("foo", "Bar"))
printAllUppercase(listOf("FOO", "BAR"))

Char sequences and strings in addition have an ifBlank extension that does the same thing as

ifEmpty , but checks for a string being all whitespace instead of empty.

val s = " \n"
println(s.ifBlank { "<blank>" })
println(s.ifBlank { null })

We’ve added a new API to kotlin-reflect that can be used to enumerate all the direct

subtypes of a sealed class, namely KClass.sealedSubclasses .

Boolean type now has companion.

Any?.hashCode() extension, which returns 0 for null .

Char now provides MIN_VALUE / MAX_VALUE constants.

associateWith

ifEmpty and ifBlank functions

Sealed classes in re ection

Smaller changes
—

—

—

—
46

SIZE_BYTES and SIZE_BITS constants in primitive type companions.

Kotlin 1.3 introduces support for the recommended code style in the IDE. Check out this page for
the migration guidelines.

kotlinx.serialization is a library which provides multiplatform support for (de)serializing objects in
Kotlin. Previously, it was a separate project, but since Kotlin 1.3, it ships with the Kotlin compiler
distribution on par with the other compiler plugins. The main di erence is that you don't need to
manually watch out for the Serialization IDE Plugin being compatible with the Kotlin IDE Plugin
version you're using: now the Kotlin IDE Plugin already includes serialization!

See here for details.

Please, note, that even though kotlinx.serialization now ships with the Kotlin Compiler
distribution, it is still considered to be an experimental feature.

Please note, that scripting is an experimental feature, meaning that no compatibility
guarantees on the API are given.

Kotlin 1.3 continues to evolve and improve scripting API, introducing some experimental support
for scripts customization, such as adding external properties, providing static or dynamic
dependencies, and so on.

For additional details, please consult the KEEP-75.

Kotlin 1.3 introduces support for runnable Kotlin scratch les. Scratch le is a kotlin script le with
a .kts extension which you can run and get evaluation results directly in the editor.

Consult the general Scratches documentation for details.

—

Tooling

Code Style Support in IDE

kotlinx.serialization

Scripting update

Scratches support

47

https://github.com/Kotlin/kotlinx.serialization
https://github.com/Kotlin/kotlinx.serialization#current-project-status
https://github.com/Kotlin/KEEP/blob/master/proposals/scripting-support.md
https://www.jetbrains.com/help/idea/scratches.html

Getting Started

Package speci cation should be at the top of the source le:

package my.demo

import kotlin.text.*

// ...

It is not required to match directories and packages: source les can be placed arbitrarily in the
le system.

See Packages.

An entry point of a Kotlin application is the main function.

fun main() {
 println("Hello world!")
}

Function having two Int parameters with Int return type:

fun sum(a: Int, b: Int): Int {
 return a + b
}

Function with an expression body and inferred return type:

fun sum(a: Int, b: Int) = a + b

Function returning no meaningful value:

fun printSum(a: Int, b: Int): Unit {
 println("sum of $a and $b is ${a + b}")
}

Unit return type can be omitted:

Basic Syntax

Package de nition and imports

Program entry point

Functions

48

fun printSum(a: Int, b: Int) {
 println("sum of $a and $b is ${a + b}")
}

See Functions.

Read-only local variables are de ned using the keyword val . They can be assigned a value only

once.

val a: Int = 1 // immediate assignment
val b = 2 // `Int` type is inferred
val c: Int // Type required when no initializer is provided
c = 3 // deferred assignment

Variables that can be reassigned use the var keyword:

var x = 5 // `Int` type is inferred
x += 1

Top-level variables:

val PI = 3.14
var x = 0

fun incrementX() {
 x += 1
}

See also Properties And Fields.

Just like most modern languages, Kotlin supports single-line (or end-of-line) and multi-line (block)
comments.

// This is an end-of-line comment

/* This is a block comment
 on multiple lines. */

Block comments in Kotlin can be nested.

/* The comment starts here
/* contains a nested comment */
and ends here. */

See Documenting Kotlin Code for information on the documentation comment syntax.

Variables

Comments

String templates

49

var a = 1
// simple name in template:
val s1 = "a is $a"

a = 2
// arbitrary expression in template:
val s2 = "${s1.replace("is", "was")}, but now is $a"

See String templates for details.

fun maxOf(a: Int, b: Int): Int {
 if (a > b) {
 return a
 } else {
 return b
 }
}

In Kotlin, if can also be used as an expression:

fun maxOf(a: Int, b: Int) = if (a > b) a else b

See if-expressions.

A reference must be explicitly marked as nullable when null value is possible.

Return null if str does not hold an integer:

fun parseInt(str: String): Int? {
 // ...
}

Use a function returning nullable value:

fun printProduct(arg1: String, arg2: String) {
 val x = parseInt(arg1)
 val y = parseInt(arg2)

 // Using `x * y` yields error because they may hold nulls.
 if (x != null && y != null) {
 // x and y are automatically cast to non-nullable after null check
 println(x * y)
 }
 else {
 println("'$arg1' or '$arg2' is not a number")
 }
}

or

Conditional expressions

Nullable values and null checks

50

// ...
if (x == null) {
 println("Wrong number format in arg1: '$arg1'")
 return
}
if (y == null) {
 println("Wrong number format in arg2: '$arg2'")
 return
}

// x and y are automatically cast to non-nullable after null check
println(x * y)

See Null-safety.

The is operator checks if an expression is an instance of a type. If an immutable local variable or

property is checked for a speci c type, there's no need to cast it explicitly:

fun getStringLength(obj: Any): Int? {
 if (obj is String) {
 // `obj` is automatically cast to `String` in this branch
 return obj.length
 }

 // `obj` is still of type `Any` outside of the type-checked branch
 return null
}

or

fun getStringLength(obj: Any): Int? {
 if (obj !is String) return null

 // `obj` is automatically cast to `String` in this branch
 return obj.length
}

or even

fun getStringLength(obj: Any): Int? {
 // `obj` is automatically cast to `String` on the right-hand side of `&&`
 if (obj is String && obj.length > 0) {
 return obj.length
 }

 return null
}

See Classes and Type casts.

Type checks and automatic casts

for loop

51

val items = listOf("apple", "banana", "kiwifruit")
for (item in items) {
 println(item)
}

or

val items = listOf("apple", "banana", "kiwifruit")
for (index in items.indices) {
 println("item at $index is ${items[index]}")
}

See for loop.

val items = listOf("apple", "banana", "kiwifruit")
var index = 0
while (index < items.size) {
 println("item at $index is ${items[index]}")
 index++
}

See while loop.

fun describe(obj: Any): String =
 when (obj) {
 1 -> "One"
 "Hello" -> "Greeting"
 is Long -> "Long"
 !is String -> "Not a string"
 else -> "Unknown"
 }

See when expression.

Check if a number is within a range using in operator:

val x = 10
val y = 9
if (x in 1..y+1) {
 println("fits in range")
}

Check if a number is out of range:

while loop

when expression

Ranges

52

val list = listOf("a", "b", "c")

if (-1 !in 0..list.lastIndex) {
 println("-1 is out of range")
}
if (list.size !in list.indices) {
 println("list size is out of valid list indices range, too")
}

Iterating over a range:

for (x in 1..5) {
 print(x)
}

or over a progression:

for (x in 1..10 step 2) {
 print(x)
}
println()
for (x in 9 downTo 0 step 3) {
 print(x)
}

See Ranges.

Iterating over a collection:

for (item in items) {
 println(item)
}

Checking if a collection contains an object using in operator:

when {
 "orange" in items -> println("juicy")
 "apple" in items -> println("apple is fine too")
}

Using lambda expressions to lter and map collections:

val fruits = listOf("banana", "avocado", "apple", "kiwifruit")
fruits
 .filter { it.startsWith("a") }
 .sortedBy { it }
 .map { it.toUpperCase() }
 .forEach { println(it) }

See Collections overview.

Collections

Creating basic classes and their instances

53

val rectangle = Rectangle(5.0, 2.0)
val triangle = Triangle(3.0, 4.0, 5.0)

See classes and objects and instances.

54

A collection of random and frequently used idioms in Kotlin. If you have a favorite idiom,
contribute it by sending a pull request.

data class Customer(val name: String, val email: String)

provides a Customer class with the following functionality:

getters (and setters in case of vars) for all properties

equals()

hashCode()

toString()

copy()

component1() , component2() , …, for all properties (see Data classes)

fun foo(a: Int = 0, b: String = "") { ... }

val positives = list.filter { x -> x > 0 }

Or alternatively, even shorter:

val positives = list.filter { it > 0 }

if ("john@example.com" in emailsList) { ... }

if ("jane@example.com" !in emailsList) { ... }

println("Name $name")

Idioms

Creating DTOs (POJOs/POCOs)

—

—

—

—

—

—

Default values for function parameters

Filtering a list

Checking element presence in a collection.

String Interpolation

Instance Checks

55

when (x) {
 is Foo -> ...
 is Bar -> ...
 else -> ...
}

for ((k, v) in map) {
 println("$k -> $v")
}

k , v can be called anything.

for (i in 1..100) { ... } // closed range: includes 100
for (i in 1 until 100) { ... } // half-open range: does not include 100
for (x in 2..10 step 2) { ... }
for (x in 10 downTo 1) { ... }
if (x in 1..10) { ... }

val list = listOf("a", "b", "c")

val map = mapOf("a" to 1, "b" to 2, "c" to 3)

println(map["key"])
map["key"] = value

val p: String by lazy {
 // compute the string
}

fun String.spaceToCamelCase() { ... }

"Convert this to camelcase".spaceToCamelCase()

Traversing a map/list of pairs

Using ranges

Read-only list

Read-only map

Accessing a map

Lazy property

Extension Functions

Creating a singleton

56

object Resource {
 val name = "Name"
}

val files = File("Test").listFiles()

println(files?.size)

val files = File("Test").listFiles()

println(files?.size ?: "empty")

val values = ...
val email = values["email"] ?: throw IllegalStateException("Email is missing!")

val emails = ... // might be empty
val mainEmail = emails.firstOrNull() ?: ""

val value = ...

value?.let {
 ... // execute this block if not null
}

val value = ...

val mapped = value?.let { transformValue(it) } ?: defaultValueIfValueIsNull

fun transform(color: String): Int {
 return when (color) {
 "Red" -> 0
 "Green" -> 1
 "Blue" -> 2
 else -> throw IllegalArgumentException("Invalid color param value")
 }
}

If not null shorthand

If not null and else shorthand

Executing a statement if null

Get rst item of a possibly empty collection

Execute if not null

Map nullable value if not null

Return on when statement

57

fun test() {
 val result = try {
 count()
 } catch (e: ArithmeticException) {
 throw IllegalStateException(e)
 }

 // Working with result
}

fun foo(param: Int) {
 val result = if (param == 1) {
 "one"
 } else if (param == 2) {
 "two"
 } else {
 "three"
 }
}

fun arrayOfMinusOnes(size: Int): IntArray {
 return IntArray(size).apply { fill(-1) }
}

fun theAnswer() = 42

This is equivalent to

fun theAnswer(): Int {
 return 42
}

This can be e ectively combined with other idioms, leading to shorter code. E.g. with the when-

expression:

fun transform(color: String): Int = when (color) {
 "Red" -> 0
 "Green" -> 1
 "Blue" -> 2
 else -> throw IllegalArgumentException("Invalid color param value")
}

'try/catch' expression

'if' expression

Builder-style usage of methods that return Unit

Single-expression functions

Calling multiple methods on an object instance (with)

58

class Turtle {
 fun penDown()
 fun penUp()
 fun turn(degrees: Double)
 fun forward(pixels: Double)
}

val myTurtle = Turtle()
with(myTurtle) { //draw a 100 pix square
 penDown()
 for(i in 1..4) {
 forward(100.0)
 turn(90.0)
 }
 penUp()
}

val stream = Files.newInputStream(Paths.get("/some/file.txt"))
stream.buffered().reader().use { reader ->
 println(reader.readText())
}

// public final class Gson {
// ...
// public <T> T fromJson(JsonElement json, Class<T> classOfT) throws
JsonSyntaxException {
// ...

inline fun <reified T: Any> Gson.fromJson(json: JsonElement): T = this.fromJson(json,
T::class.java)

val b: Boolean? = ...
if (b == true) {
 ...
} else {
 // `b` is false or null
}

var a = 1
var b = 2
a = b.also { b = a }

Java 7's try with resources

Convenient form for a generic function that requires the generic type
information

Consuming a nullable Boolean

Swapping two variables

59

This page contains the current coding style for the Kotlin language.

Source code organization

Naming rules

Formatting

Documentation comments

Avoiding redundant constructs

Idiomatic use of language features

Coding conventions for libraries

To con gure the IntelliJ formatter according to this style guide, please install Kotlin plugin version
1.2.20 or newer, go to Settings | Editor | Code Style | Kotlin, click Set from… link in the upper
right corner, and select Prede ned style | Kotlin style guide from the menu.

To verify that your code is formatted according to the style guide, go to the inspection settings
and enable the Kotlin | Style issues | File is not formatted according to project settings
inspection. Additional inspections that verify other issues described in the style guide (such as
naming conventions) are enabled by default.

In pure Kotlin projects, the recommended directory structure follows the package structure with
the common root package omitted. For example, if all the code in the project is in the
org.example.kotlin package and its subpackages, les with the org.example.kotlin

package should be placed directly under the source root, and les in
org.example.kotlin.network.socket should be in the network/socket subdirectory of

the source root.

On the JVM: In projects where Kotlin is used together with Java, Kotlin source les should
reside in the same source root as the Java source les, and follow the same directory
structure: each le should be stored in the directory corresponding to each package
statement.

Coding Conventions

—

—

—

—

—

—

—

Applying the style guide

Source code organization

Directory structure

Source le names

60

If a Kotlin le contains a single class (potentially with related top-level declarations), its name
should be the same as the name of the class, with the .kt extension appended. If a le contains
multiple classes, or only top-level declarations, choose a name describing what the le contains,
and name the le accordingly. Use camel humps with an uppercase rst letter (e.g.
ProcessDeclarations.kt).

The name of the le should describe what the code in the le does. Therefore, you should avoid
using meaningless words such as "Util" in le names.

Placing multiple declarations (classes, top-level functions or properties) in the same Kotlin source
le is encouraged as long as these declarations are closely related to each other semantically and

the le size remains reasonable (not exceeding a few hundred lines).

In particular, when de ning extension functions for a class which are relevant for all clients of this
class, put them in the same le where the class itself is de ned. When de ning extension
functions that make sense only for a speci c client, put them next to the code of that client. Do
not create les just to hold "all extensions of Foo".

Generally, the contents of a class is sorted in the following order:

Property declarations and initializer blocks

Secondary constructors

Method declarations

Companion object

Do not sort the method declarations alphabetically or by visibility, and do not separate regular
methods from extension methods. Instead, put related stu together, so that someone reading
the class from top to bottom would be able to follow the logic of what's happening. Choose an
order (either higher-level stu rst, or vice versa) and stick to it.

Put nested classes next to the code that uses those classes. If the classes are intended to be used
externally and aren't referenced inside the class, put them in the end, after the companion
object.

When implementing an interface, keep the implementing members in the same order as
members of the interface (if necessary, interspersed with additional private methods used for
the implementation)

Source le organization

Class layout

—

—

—

—

Interface implementation layout

Overload layout

61

Always put overloads next to each other in a class.

Package and class naming rules in Kotlin are quite simple:

Names of packages are always lower case and do not use underscores
(org.example.project). Using multi-word names is generally discouraged, but if you do

need to use multiple words, you can either simply concatenate them together or use camel
humps (org.example.myProject).

Names of classes and objects start with an upper case letter and use camel humps:

open class DeclarationProcessor { ... }

object EmptyDeclarationProcessor : DeclarationProcessor() { ... }

Names of functions, properties and local variables start with a lower case letter and use camel
humps and no underscores:

fun processDeclarations() { ... }
var declarationCount = ...

Exception: factory functions used to create instances of classes can have the same name as the
class being created:

abstract class Foo { ... }

class FooImpl : Foo { ... }

fun Foo(): Foo { return FooImpl(...) }

In tests (and only in tests), it's acceptable to use method names with spaces enclosed in backticks.
(Note that such method names are currently not supported by the Android runtime.)
Underscores in method names are also allowed in test code.

class MyTestCase {
 @Test fun `ensure everything works`() { ... }

 @Test fun ensureEverythingWorks_onAndroid() { ... }
}

Naming rules

—

—

Function names

Names for test methods

Property names

62

Names of constants (properties marked with const , or top-level or object val properties with

no custom get function that hold deeply immutable data) should use uppercase underscore-

separated names:

const val MAX_COUNT = 8
val USER_NAME_FIELD = "UserName"

Names of top-level or object properties which hold objects with behavior or mutable data should
use regular camel-hump names:

val mutableCollection: MutableSet<String> = HashSet()

Names of properties holding references to singleton objects can use the same naming style as
object declarations:

val PersonComparator: Comparator<Person> = ...

For enum constants, it's OK to use either uppercase underscore-separated names (enum class

Color { RED, GREEN }) or regular camel-humps names starting with an uppercase letter,

depending on the usage.

If a class has two properties which are conceptually the same but one is part of a public API and
another is an implementation detail, use an underscore as the pre x for the name of the private
property:

class C {
 private val _elementList = mutableListOf<Element>()

 val elementList: List<Element>
 get() = _elementList
}

The name of a class is usually a noun or a noun phrase explaining what the class is: List ,

PersonReader .

The name of a method is usually a verb or a verb phrase saying what the method does: close ,

readPersons . The name should also suggest if the method is mutating the object or returning

a new one. For instance sort is sorting a collection in place, while sorted is returning a sorted

copy of the collection.

The names should make it clear what the purpose of the entity is, so it's best to avoid using
meaningless words (Manager , Wrapper etc.) in names.

Names for backing properties

Choosing good names

63

When using an acronym as part of a declaration name, capitalize it if it consists of two letters
(IOStream); capitalize only the rst letter if it is longer (XmlFormatter , HttpInputStream).

Use 4 spaces for indentation. Do not use tabs.

For curly braces, put the opening brace in the end of the line where the construct begins, and the
closing brace on a separate line aligned horizontally with the opening construct.

if (elements != null) {
 for (element in elements) {
 // ...
 }
}

(Note: In Kotlin, semicolons are optional, and therefore line breaks are signi cant. The language
design assumes Java-style braces, and you may encounter surprising behavior if you try to use a
di erent formatting style.)

Put spaces around binary operators (a + b). Exception: don't put spaces around the "range to"

operator (0..i).

Do not put spaces around unary operators (a++)

Put spaces between control ow keywords (if , when , for and while) and the corresponding

opening parenthesis.

Do not put a space before an opening parenthesis in a primary constructor declaration, method
declaration or method call.

class A(val x: Int)

fun foo(x: Int) { ... }

fun bar() {
 foo(1)
}

Never put a space after (, [, or before] ,) .

Never put a space around . or ?. : foo.bar().filter { it > 2 }.joinToString() ,

foo?.bar()

Put a space after // : // This is a comment

Do not put spaces around angle brackets used to specify type parameters: class Map<K, V> {

... }

Formatting

Horizontal whitespace

64

Do not put spaces around :: : Foo::class , String::length

Do not put a space before ? used to mark a nullable type: String?

As a general rule, avoid horizontal alignment of any kind. Renaming an identi er to a name with a
di erent length should not a ect the formatting of either the declaration or any of the usages.

Put a space before : in the following cases:

when it's used to separate a type and a supertype;

when delegating to a superclass constructor or a di erent constructor of the same class;

after the object keyword.

Don't put a space before : when it separates a declaration and its type.

Always put a space after : .

abstract class Foo<out T : Any> : IFoo {
 abstract fun foo(a: Int): T
}

class FooImpl : Foo() {
 constructor(x: String) : this(x) { ... }

 val x = object : IFoo { ... }
}

Classes with a few primary constructor parameters can be written in a single line:

class Person(id: Int, name: String)

Classes with longer headers should be formatted so that each primary constructor parameter is
in a separate line with indentation. Also, the closing parenthesis should be on a new line. If we
use inheritance, then the superclass constructor call or list of implemented interfaces should be
located on the same line as the parenthesis:

class Person(
 id: Int,
 name: String,
 surname: String
) : Human(id, name) { ... }

For multiple interfaces, the superclass constructor call should be located rst and then each
interface should be located in a di erent line:

Colon

—

—

—

Class header formatting

65

class Person(
 id: Int,
 name: String,
 surname: String
) : Human(id, name),
 KotlinMaker { ... }

For classes with a long supertype list, put a line break after the colon and align all supertype
names horizontally:

class MyFavouriteVeryLongClassHolder :
 MyLongHolder<MyFavouriteVeryLongClass>(),
 SomeOtherInterface,
 AndAnotherOne {

 fun foo() { ... }
}

To clearly separate the class header and body when the class header is long, either put a blank
line following the class header (as in the example above), or put the opening curly brace on a
separate line:

class MyFavouriteVeryLongClassHolder :
 MyLongHolder<MyFavouriteVeryLongClass>(),
 SomeOtherInterface,
 AndAnotherOne
{
 fun foo() { ... }
}

Use regular indent (4 spaces) for constructor parameters.

Rationale: This ensures that properties declared in the primary constructor have the same
indentation as properties declared in the body of a class.

If a declaration has multiple modi ers, always put them in the following order:

Modi ers

66

public / protected / private / internal
expect / actual
final / open / abstract / sealed / const
external
override
lateinit
tailrec
vararg
suspend
inner
enum / annotation
companion
inline
infix
operator
data

Place all annotations before modi ers:

@Named("Foo")
private val foo: Foo

Unless you're working on a library, omit redundant modi ers (e.g. public).

Annotations are typically placed on separate lines, before the declaration to which they are
attached, and with the same indentation:

@Target(AnnotationTarget.PROPERTY)
annotation class JsonExclude

Annotations without arguments may be placed on the same line:

@JsonExclude @JvmField
var x: String

A single annotation without arguments may be placed on the same line as the corresponding
declaration:

@Test fun foo() { ... }

File annotations are placed after the le comment (if any), before the package statement, and

are separated from package with a blank line (to emphasize the fact that they target the le and

not the package).

/** License, copyright and whatever */
@file:JvmName("FooBar")

package foo.bar

Annotation formatting

File annotations

67

If the function signature doesn't t on a single line, use the following syntax:

fun longMethodName(
 argument: ArgumentType = defaultValue,
 argument2: AnotherArgumentType
): ReturnType {
 // body
}

Use regular indent (4 spaces) for function parameters.

Rationale: Consistency with constructor parameters

Prefer using an expression body for functions with the body consisting of a single expression.

fun foo(): Int { // bad
 return 1
}

fun foo() = 1 // good

If the function has an expression body that doesn't t in the same line as the declaration, put the
= sign on the rst line. Indent the expression body by 4 spaces.

fun f(x: String) =
 x.length

For very simple read-only properties, consider one-line formatting:

val isEmpty: Boolean get() = size == 0

For more complex properties, always put get and set keywords on separate lines:

val foo: String
 get() { ... }

For properties with an initializer, if the initializer is long, add a line break after the equals sign
and indent the initializer by four spaces:

private val defaultCharset: Charset? =
 EncodingRegistry.getInstance().getDefaultCharsetForPropertiesFiles(file)

Function formatting

Expression body formatting

Property formatting

Formatting control ow statements

68

If the condition of an if or when statement is multiline, always use curly braces around the

body of the statement. Indent each subsequent line of the condition by 4 spaces relative to
statement begin. Put the closing parentheses of the condition together with the opening curly
brace on a separate line:

if (!component.isSyncing &&
 !hasAnyKotlinRuntimeInScope(module)
) {
 return createKotlinNotConfiguredPanel(module)
}

Rationale: Tidy alignment and clear separation of condition and statement body

Put the else , catch , finally keywords, as well as the while keyword of a do/while loop,

on the same line as the preceding curly brace:

if (condition) {
 // body
} else {
 // else part
}

try {
 // body
} finally {
 // cleanup
}

In a when statement, if a branch is more than a single line, consider separating it from adjacent

case blocks with a blank line:

private fun parsePropertyValue(propName: String, token: Token) {
 when (token) {
 is Token.ValueToken ->
 callback.visitValue(propName, token.value)

 Token.LBRACE -> { // ...
 }
 }
}

Put short branches on the same line as the condition, without braces.

when (foo) {
 true -> bar() // good
 false -> { baz() } // bad
}

In long argument lists, put a line break after the opening parenthesis. Indent arguments by 4
spaces. Group multiple closely related arguments on the same line.

Method call formatting

69

drawSquare(
 x = 10, y = 10,
 width = 100, height = 100,
 fill = true
)

Put spaces around the = sign separating the argument name and value.

When wrapping chained calls, put the . character or the ?. operator on the next line, with a

single indent:

val anchor = owner
 ?.firstChild!!
 .siblings(forward = true)
 .dropWhile { it is PsiComment || it is PsiWhiteSpace }

The rst call in the chain usually should have a line break before it, but it's OK to omit it if the
code makes more sense that way.

In lambda expressions, spaces should be used around the curly braces, as well as around the
arrow which separates the parameters from the body. If a call takes a single lambda, it should be
passed outside of parentheses whenever possible.

list.filter { it > 10 }

If assigning a label for a lambda, do not put a space between the label and the opening curly
brace:

fun foo() {
 ints.forEach lit@{
 // ...
 }
}

When declaring parameter names in a multiline lambda, put the names on the rst line, followed
by the arrow and the newline:

appendCommaSeparated(properties) { prop ->
 val propertyValue = prop.get(obj) // ...
}

If the parameter list is too long to t on a line, put the arrow on a separate line:

Chained call wrapping

Lambda formatting

70

foo {
 context: Context,
 environment: Env
 ->
 context.configureEnv(environment)
}

For longer documentation comments, place the opening /** on a separate line and begin each

subsequent line with an asterisk:

/**
 * This is a documentation comment
 * on multiple lines.
 */

Short comments can be placed on a single line:

/** This is a short documentation comment. */

Generally, avoid using @param and @return tags. Instead, incorporate the description of

parameters and return values directly into the documentation comment, and add links to
parameters wherever they are mentioned. Use @param and @return only when a lengthy

description is required which doesn't t into the ow of the main text.

// Avoid doing this:

/**
 * Returns the absolute value of the given number.
 * @param number The number to return the absolute value for.
 * @return The absolute value.
 */
fun abs(number: Int) = ...

// Do this instead:

/**
 * Returns the absolute value of the given [number].
 */
fun abs(number: Int) = ...

In general, if a certain syntactic construction in Kotlin is optional and highlighted by the IDE as
redundant, you should omit it in your code. Do not leave unnecessary syntactic elements in code
just "for clarity".

If a function returns Unit, the return type should be omitted:

Documentation comments

Avoiding redundant constructs

Unit

71

fun foo() { // ": Unit" is omitted here

}

Omit semicolons whenever possible.

Don't use curly braces when inserting a simple variable into a string template. Use curly braces
only for longer expressions.

println("$name has ${children.size} children")

Prefer using immutable data to mutable. Always declare local variables and properties as val

rather than var if they are not modi ed after initialization.

Always use immutable collection interfaces (Collection , List , Set , Map) to declare

collections which are not mutated. When using factory functions to create collection instances,
always use functions that return immutable collection types when possible:

// Bad: use of mutable collection type for value which will not be mutated
fun validateValue(actualValue: String, allowedValues: HashSet<String>) { ... }

// Good: immutable collection type used instead
fun validateValue(actualValue: String, allowedValues: Set<String>) { ... }

// Bad: arrayListOf() returns ArrayList<T>, which is a mutable collection type
val allowedValues = arrayListOf("a", "b", "c")

// Good: listOf() returns List<T>
val allowedValues = listOf("a", "b", "c")

Prefer declaring functions with default parameter values to declaring overloaded functions.

// Bad
fun foo() = foo("a")
fun foo(a: String) { ... }

// Good
fun foo(a: String = "a") { ... }

Semicolons

String templates

Idiomatic use of language features

Immutability

Default parameter values

Type aliases

72

If you have a functional type or a type with type parameters which is used multiple times in a
codebase, prefer de ning a type alias for it:

typealias MouseClickHandler = (Any, MouseEvent) -> Unit
typealias PersonIndex = Map<String, Person>

In lambdas which are short and not nested, it's recommended to use the it convention instead

of declaring the parameter explicitly. In nested lambdas with parameters, parameters should be
always declared explicitly.

Avoid using multiple labeled returns in a lambda. Consider restructuring the lambda so that it will
have a single exit point. If that's not possible or not clear enough, consider converting the lambda
into an anonymous function.

Do not use a labeled return for the last statement in a lambda.

Use the named argument syntax when a method takes multiple parameters of the same
primitive type, or for parameters of Boolean type, unless the meaning of all parameters is

absolutely clear from context.

drawSquare(x = 10, y = 10, width = 100, height = 100, fill = true)

Prefer using the expression form of try , if and when . Examples:

return if (x) foo() else bar()

return when(x) {
 0 -> "zero"
 else -> "nonzero"
}

The above is preferable to:

if (x)
 return foo()
else
 return bar()

when(x) {
 0 -> return "zero"
 else -> return "nonzero"
}

Lambda parameters

Returns in a lambda

Named arguments

Using conditional statements

73

Prefer using if for binary conditions instead of when . Instead of

when (x) {
 null -> ...
 else -> ...
}

use if (x == null) ... else ...

Prefer using when if there are three or more options.

If you need to use a nullable Boolean in a conditional statement, use if (value == true)

or if (value == false) checks.

Prefer using higher-order functions (filter , map etc.) to loops. Exception: forEach (prefer

using a regular for loop instead, unless the receiver of forEach is nullable or forEach is

used as part of a longer call chain).

When making a choice between a complex expression using multiple higher-order functions and
a loop, understand the cost of the operations being performed in each case and keep
performance considerations in mind.

Use the until function to loop over an open range:

for (i in 0..n - 1) { ... } // bad
for (i in 0 until n) { ... } // good

Prefer using string templates to string concatenation.

Prefer to use multiline strings instead of embedding \n escape sequences into regular string

literals.

To maintain indentation in multiline strings, use trimIndent when the resulting string does not

require any internal indentation, or trimMargin when internal indentation is required:

if versus when

Using nullable Boolean values in conditions

Using loops

Loops on ranges

Using strings

74

assertEquals(
 """
 Foo
 Bar
 """.trimIndent(),
 value
)

val a = """if(a > 1) {
 | return a
 |}""".trimMargin()

In some cases functions with no arguments might be interchangeable with read-only properties.
Although the semantics are similar, there are some stylistic conventions on when to prefer one to
another.

Prefer a property over a function when the underlying algorithm:

does not throw

is cheap to calculate (or caсhed on the rst run)

returns the same result over invocations if the object state hasn't changed

Use extension functions liberally. Every time you have a function that works primarily on an
object, consider making it an extension function accepting that object as a receiver. To minimize
API pollution, restrict the visibility of extension functions as much as it makes sense. As
necessary, use local extension functions, member extension functions, or top-level extension
functions with private visibility.

Declare a function as in x only when it works on two objects which play a similar role. Good
examples: and , to , zip . Bad example: add .

Don't declare a method as in x if it mutates the receiver object.

If you declare a factory function for a class, avoid giving it the same name as the class itself.
Prefer using a distinct name making it clear why the behavior of the factory function is special.
Only if there is really no special semantics, you can use the same name as the class.

Example:

Functions vs Properties

—

—

—

Using extension functions

Using in x functions

Factory functions

75

class Point(val x: Double, val y: Double) {
 companion object {
 fun fromPolar(angle: Double, radius: Double) = Point(...)
 }
}

If you have an object with multiple overloaded constructors that don't call di erent superclass
constructors and can't be reduced to a single constructor with default argument values, prefer to
replace the overloaded constructors with factory functions.

A public function/method returning an expression of a platform type must declare its Kotlin type
explicitly:

fun apiCall(): String = MyJavaApi.getProperty("name")

Any property (package-level or class-level) initialised with an expression of a platform type must
declare its Kotlin type explicitly:

class Person {
 val name: String = MyJavaApi.getProperty("name")
}

A local value initialized with an expression of a platform type may or may not have a type
declaration:

fun main() {
 val name = MyJavaApi.getProperty("name")
 println(name)
}

Kotlin provides a variety of functions to execute a block of code in the context of a given object:
let , run , with , apply , and also . For the guidance on choosing the right scope function for

your case, refer to Scope Functions.

When writing libraries, it's recommended to follow an additional set of rules to ensure API
stability:

Always explicitly specify member visibility (to avoid accidentally exposing declarations as
public API)

Always explicitly specify function return types and property types (to avoid accidentally
changing the return type when the implementation changes)

Provide KDoc comments for all public members, with the exception of overrides that do not
require any new documentation (to support generating documentation for the library)

Platform types

Using scope functions apply/with/run/also/let

Coding conventions for libraries

—

—

—

76

77

Basics

In Kotlin, everything is an object in the sense that we can call member functions and properties
on any variable. Some of the types can have a special internal representation - for example,
numbers, characters and booleans can be represented as primitive values at runtime - but to the
user they look like ordinary classes. In this section we describe the basic types used in Kotlin:
numbers, characters, booleans, arrays, and strings.

Kotlin provides a set of built-in types that represent numbers.
For integer numbers, there are four types with di erent sizes and, hence, value ranges.

Type Size (bits) Min value Max value
Byte 8 -128 127
Short 16 -32768 32767
Int 32 -2,147,483,648 (-2) 2,147,483,647 (2 - 1)
Long 64 -9,223,372,036,854,775,808 (-2) 9,223,372,036,854,775,807 (2 - 1)

All variables initialized with integer values not exceeding the maximum value of Int have the

inferred type Int . If the initial value exceeds this value, then the type is Long . To specify the

Long value explicitly, append the su x l or L to the value.

val one = 1 // Int
val threeBillion = 3000000000 // Long
val oneLong = 1L // Long
val oneByte: Byte = 1

For oating-point numbers, Kotlin provides types Float and Double . According to the IEEE 754

standard, oating point types di er by their decimal place, that is, how many decimal digits they
can store. Float re ects the IEEE 754 single precision, while Double provides double precision.

Type Size (bits) Significant bits Exponent bits Decimal digits
Float 32 24 8 6-7
Double 64 53 11 15-16

For variables initialized with fractional numbers, the compiler infers the Double type. To

explicitly specify the Float type for a value, add the su x f or F . If such a value contains

more that 6-7 decimal digits, it will be rounded.

Basic Types

Numbers

31 31

63 63

78

https://en.wikipedia.org/wiki/IEEE_754

val pi = 3.14 // Double
val e = 2.7182818284 // Double
val eFloat = 2.7182818284f // Float, actual value is 2.7182817

Note that unlike some other languages, there are no implicit widening conversions for numbers
in Kotlin. For example, a function with a Double parameter can be called only on Double

values, but not Float , Int , or other numeric values.

fun main() {
 fun printDouble(d: Double) { print(d) }

 val i = 1
 val d = 1.1
 val f = 1.1f

 printDouble(d)
// printDouble(i) // Error: Type mismatch
// printDouble(f) // Error: Type mismatch
}

To convert numeric values to di erent types, use Explicit conversions.

There are the following kinds of literal constants for integral values:

Decimals: 123

Longs are tagged by a capital L : 123L

Hexadecimals: 0x0F

Binaries: 0b00001011

NOTE: Octal literals are not supported.

Kotlin also supports a conventional notation for oating-point numbers:

Doubles by default: 123.5 , 123.5e10

Floats are tagged by f or F : 123.5f

You can use underscores to make number constants more readable:

val oneMillion = 1_000_000
val creditCardNumber = 1234_5678_9012_3456L
val socialSecurityNumber = 999_99_9999L
val hexBytes = 0xFF_EC_DE_5E
val bytes = 0b11010010_01101001_10010100_10010010

Literal constants

—

—

—

—

—

—

Underscores in numeric literals (since 1.1)

Representation

79

On the Java platform, numbers are physically stored as JVM primitive types, unless we need a
nullable number reference (e.g. Int?) or generics are involved. In the latter cases numbers are

boxed.

Note that boxing of numbers does not necessarily preserve identity:

val a: Int = 10000
println(a === a) // Prints 'true'
val boxedA: Int? = a
val anotherBoxedA: Int? = a
println(boxedA === anotherBoxedA) // !!!Prints 'false'!!!

On the other hand, it preserves equality:

val a: Int = 10000
println(a == a) // Prints 'true'
val boxedA: Int? = a
val anotherBoxedA: Int? = a
println(boxedA == anotherBoxedA) // Prints 'true'

Due to di erent representations, smaller types are not subtypes of bigger ones. If they were, we
would have troubles of the following sort:

// Hypothetical code, does not actually compile:
val a: Int? = 1 // A boxed Int (java.lang.Integer)
val b: Long? = a // implicit conversion yields a boxed Long (java.lang.Long)
print(b == a) // Surprise! This prints "false" as Long's equals() checks whether the
other is Long as well

So equality would have been lost silently all over the place, not to mention identity.

As a consequence, smaller types are NOT implicitly converted to bigger types. This means that we
cannot assign a value of type Byte to an Int variable without an explicit conversion

val b: Byte = 1 // OK, literals are checked statically
val i: Int = b // ERROR

We can use explicit conversions to widen numbers

val i: Int = b.toInt() // OK: explicitly widened
print(i)

Every number type supports the following conversions:

toByte(): Byte

toShort(): Short

toInt(): Int

toLong(): Long

Explicit conversions

—

—

—

—

80

toFloat(): Float

toDouble(): Double

toChar(): Char

Absence of implicit conversions is rarely noticeable because the type is inferred from the context,
and arithmetical operations are overloaded for appropriate conversions, for example

val l = 1L + 3 // Long + Int => Long

Kotlin supports the standard set of arithmetical operations over numbers, which are declared as
members of appropriate classes (but the compiler optimizes the calls down to the corresponding
instructions). See Operator overloading.

As of bitwise operations, there're no special characters for them, but just named functions that
can be called in in x form, for example:

val x = (1 shl 2) and 0x000FF000

Here is the complete list of bitwise operations (available for Int and Long only):

shl(bits) – signed shift left

shr(bits) – signed shift right

ushr(bits) – unsigned shift right

and(bits) – bitwise and

or(bits) – bitwise or

xor(bits) – bitwise xor

inv() – bitwise inversion

The operations on oating point numbers discussed in this section are:

Equality checks: a == b and a != b

Comparison operators: a < b , a > b , a <= b , a >= b

Range instantiation and range checks: a..b , x in a..b , x !in a..b

When the operands a and b are statically known to be Float or Double or their nullable

counterparts (the type is declared or inferred or is a result of a smart cast), the operations on the
numbers and the range that they form follow the IEEE 754 Standard for Floating-Point Arithmetic.

—

—

—

Operations

—

—

—

—

—

—

—

Floating point numbers comparison

—

—

—

81

However, to support generic use cases and provide total ordering, when the operands are not
statically typed as oating point numbers (e.g. Any , Comparable<...> , a type parameter), the

operations use the equals and compareTo implementations for Float and Double , which

disagree with the standard, so that:

NaN is considered equal to itself

NaN is considered greater than any other element including POSITIVE_INFINITY

-0.0 is considered less than 0.0

Characters are represented by the type Char . They can not be treated directly as numbers

fun check(c: Char) {
 if (c == 1) { // ERROR: incompatible types
 // ...
 }
}

Character literals go in single quotes: '1' . Special characters can be escaped using a backslash.

The following escape sequences are supported: \t , \b , \n , \r , \' , \" , \\ and \$. To

encode any other character, use the Unicode escape sequence syntax: '\uFF00' .

We can explicitly convert a character to an Int number:

fun decimalDigitValue(c: Char): Int {
 if (c !in '0'..'9')
 throw IllegalArgumentException("Out of range")
 return c.toInt() - '0'.toInt() // Explicit conversions to numbers
}

Like numbers, characters are boxed when a nullable reference is needed. Identity is not
preserved by the boxing operation.

The type Boolean represents booleans, and has two values: true and false.

Booleans are boxed if a nullable reference is needed.

Built-in operations on booleans include

|| – lazy disjunction

&& – lazy conjunction

! - negation

—
—

—

Characters

Booleans

—

—

—

Arrays

82

Arrays in Kotlin are represented by the Array class, that has get and set functions (that turn

into [] by operator overloading conventions), and size property, along with a few other

useful member functions:

class Array<T> private constructor() {
 val size: Int
 operator fun get(index: Int): T
 operator fun set(index: Int, value: T): Unit

 operator fun iterator(): Iterator<T>
 // ...
}

To create an array, we can use a library function arrayOf() and pass the item values to it, so

that arrayOf(1, 2, 3) creates an array [1, 2, 3] . Alternatively, the arrayOfNulls()

library function can be used to create an array of a given size lled with null elements.

Another option is to use the Array constructor that takes the array size and the function that

can return the initial value of each array element given its index:

// Creates an Array<String> with values ["0", "1", "4", "9", "16"]
val asc = Array(5) { i -> (i * i).toString() }
asc.forEach { println(it) }

As we said above, the [] operation stands for calls to member functions get() and set() .

Arrays in Kotlin are invariant. This means that Kotlin does not let us assign an Array<String>

to an Array<Any> , which prevents a possible runtime failure (but you can use Array<out

Any> , see Type Projections).

Kotlin also has specialized classes to represent arrays of primitive types without boxing
overhead: ByteArray , ShortArray , IntArray and so on. These classes have no inheritance

relation to the Array class, but they have the same set of methods and properties. Each of them

also has a corresponding factory function:

val x: IntArray = intArrayOf(1, 2, 3)
x[0] = x[1] + x[2]

// Array of int of size 5 with values [0, 0, 0, 0, 0]
val arr = IntArray(5)

// e.g. initialise the values in the array with a constant
// Array of int of size 5 with values [42, 42, 42, 42, 42]
val arr = IntArray(5) { 42 }

// e.g. initialise the values in the array using a lambda
// Array of int of size 5 with values [0, 1, 2, 3, 4] (values initialised to their index
value)
var arr = IntArray(5, { it * 1 })

Primitive type arrays

83

Unsigned types are available only since Kotlin 1.3 and currently are experimental. See
details below

Kotlin introduces following types for unsigned integers:

kotlin.UByte : an unsigned 8-bit integer, ranges from 0 to 255

kotlin.UShort : an unsigned 16-bit integer, ranges from 0 to 65535

kotlin.UInt : an unsigned 32-bit integer, ranges from 0 to 2^32 - 1

kotlin.ULong : an unsigned 64-bit integer, ranges from 0 to 2^64 - 1

Unsigned types support most of the operations of their signed counterparts.

Note that changing type from unsigned type to signed counterpart (and vice versa) is a
binary incompatible change

Unsigned types are implemented using another experimental feature, namely inline classes.

Same as for primitives, each of unsigned type has corresponding type that represents array,
specialized for that unsigned type:

kotlin.UByteArray : an array of unsigned bytes

kotlin.UShortArray : an array of unsigned shorts

kotlin.UIntArray : an array of unsigned ints

kotlin.ULongArray : an array of unsigned longs

Same as for signed integer arrays, they provide similar API to Array class without boxing

overhead.

Also, ranges and progressions supported for UInt and ULong by classes

kotlin.ranges.UIntRange , kotlin.ranges.UIntProgression ,

kotlin.ranges.ULongRange , kotlin.ranges.ULongProgression

To make unsigned integers easier to use, Kotlin provides an ability to tag an integer literal with a
su x indicating a speci c unsigned type (similarly to Float/Long):

su xes u and U tag literal as unsigned. Exact type will be determined based on the expected

type. If no expected type is provided, UInt or ULong will be chosen based on the size of

Unsigned integers

—

—

—

—

Specialized classes

—

—

—

—

Literals

—

84

literal

val b: UByte = 1u // UByte, expected type provided
val s: UShort = 1u // UShort, expected type provided
val l: ULong = 1u // ULong, expected type provided

val a1 = 42u // UInt: no expected type provided, constant fits in UInt
val a2 = 0xFFFF_FFFF_FFFFu // ULong: no expected type provided, constant doesn't fit in
UInt

su xes uL and UL explicitly tag literal as unsigned long.

val a = 1UL // ULong, even though no expected type provided and constant fits into UInt

The design of unsigned types is experimental, meaning that this feature is moving fast and no
compatibility guarantees are given. When using unsigned arithmetics in Kotlin 1.3+, warning will
be reported, indicating that this feature is experimental. To remove warning, you have to opt-in
for experimental usage of unsigned types.

There are two possible ways to opt-in for unsigned types: with marking your API as experimental
too, or without doing that.

to propagate experimentality, either annotate declarations which use unsigned integers with
@ExperimentalUnsignedTypes or pass -

Xexperimental=kotlin.ExperimentalUnsignedTypes to the compiler (note that the

latter will make all declaration in compiled module experimental)

to opt-in without propagating experimentality, either annotate declarations with
@UseExperimental(ExperimentalUnsignedTypes::class) or pass -Xuse-

experimental=kotlin.ExperimentalUnsignedTypes

It's up to you to decide if your clients have to explicitly opt-in into usage of your API, but bear in
mind that unsigned types are an experimental feature, so API which uses them can be suddenly
broken due to changes in language.

See also or Experimental API KEEP for technical details.

See language proposal for unsigned types for technical details and further discussion.

Strings are represented by the type String . Strings are immutable. Elements of a string are

characters that can be accessed by the indexing operation: s[i] . A string can be iterated over

with a for-loop:

—

Experimental status of unsigned integers

—

—

Further discussion

Strings

85

https://github.com/Kotlin/KEEP/blob/master/proposals/experimental.md
https://github.com/Kotlin/KEEP/blob/master/proposals/unsigned-types.md

for (c in str) {
 println(c)
}

You can concatenate strings using the + operator. This also works for concatenating strings with

values of other types, as long as the rst element in the expression is a string:

val s = "abc" + 1
println(s + "def")

Note that in most cases using string templates or raw strings is preferable to string
concatenation.

Kotlin has two types of string literals: escaped strings that may have escaped characters in them
and raw strings that can contain newlines and arbitrary text. Here's an example of an escaped
string:

val s = "Hello, world!\n"

Escaping is done in the conventional way, with a backslash. See Characters above for the list of
supported escape sequences.

A raw string is delimited by a triple quote ("""), contains no escaping and can contain newlines

and any other characters:

val text = """
 for (c in "foo")
 print(c)
"""

You can remove leading whitespace with trimMargin() function:

val text = """
 |Tell me and I forget.
 |Teach me and I remember.
 |Involve me and I learn.
 |(Benjamin Franklin)
 """.trimMargin()

By default | is used as margin pre x, but you can choose another character and pass it as a

parameter, like trimMargin(">") .

String literals may contain template expressions, i.e. pieces of code that are evaluated and whose
results are concatenated into the string. A template expression starts with a dollar sign ($) and
consists of either a simple name:

String literals

String templates

86

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/trim-margin.html

val i = 10
println("i = $i") // prints "i = 10"

or an arbitrary expression in curly braces:

val s = "abc"
println("$s.length is ${s.length}") // prints "abc.length is 3"

Templates are supported both inside raw strings and inside escaped strings. If you need to
represent a literal $ character in a raw string (which doesn't support backslash escaping), you

can use the following syntax:

val price = """
${'$'}9.99
"""

87

A source le may start with a package declaration:

package org.example

fun printMessage() { /*...*/ }
class Message { /*...*/ }

// ...

All the contents (such as classes and functions) of the source le are contained by the package
declared. So, in the example above, the full name of printMessage() is

org.example.printMessage , and the full name of Message is org.example.Message .

If the package is not speci ed, the contents of such a le belong to the default package that has
no name.

A number of packages are imported into every Kotlin le by default:

kotlin.*

kotlin.annotation.*

kotlin.collections.*

kotlin.comparisons.* (since 1.1)

kotlin.io.*

kotlin.ranges.*

kotlin.sequences.*

kotlin.text.*

Additional packages are imported depending on the target platform:

JVM:

java.lang.*

kotlin.jvm.*

JS:

kotlin.js.*

Apart from the default imports, each le may contain its own import directives. Syntax for
imports is described in the grammar.

We can import either a single name, e.g.

Packages

Default Imports

—

—

—

—

—

—

—

—

—

—

—

—

—

Imports

88

import org.example.Message // Message is now accessible without qualification

or all the accessible contents of a scope (package, class, object etc):

import org.example.* // everything in 'org.example' becomes accessible

If there is a name clash, we can disambiguate by using as keyword to locally rename the clashing

entity:

import org.example.Message // Message is accessible
import org.test.Message as testMessage // testMessage stands for 'org.test.Message'

The import keyword is not restricted to importing classes; you can also use it to import other

declarations:

top-level functions and properties;

functions and properties declared in object declarations;

enum constants.

If a top-level declaration is marked private, it is private to the le it's declared in (see Visibility

Modi ers).

—

—

—

Visibility of Top-level Declarations

89

In Kotlin, if is an expression, i.e. it returns a value. Therefore there is no ternary operator

(condition ? then : else), because ordinary if works ne in this role.

// Traditional usage
var max = a
if (a < b) max = b

// With else
var max: Int
if (a > b) {
 max = a
} else {
 max = b
}

// As expression
val max = if (a > b) a else b

if branches can be blocks, and the last expression is the value of a block:

val max = if (a > b) {
 print("Choose a")
 a
} else {
 print("Choose b")
 b
}

If you're using if as an expression rather than a statement (for example, returning its value or

assigning it to a variable), the expression is required to have an else branch.

See the grammar for if.

when replaces the switch operator of C-like languages. In the simplest form it looks like this

when (x) {
 1 -> print("x == 1")
 2 -> print("x == 2")
 else -> { // Note the block
 print("x is neither 1 nor 2")
 }
}

when matches its argument against all branches sequentially until some branch condition is

satis ed. when can be used either as an expression or as a statement. If it is used as an

expression, the value of the satis ed branch becomes the value of the overall expression. If it is
used as a statement, the values of individual branches are ignored. (Just like with if, each branch

can be a block, and its value is the value of the last expression in the block.)

Control Flow: if, when, for, while

If Expression

When Expression

90

The else branch is evaluated if none of the other branch conditions are satis ed. If when is used

as an expression, the else branch is mandatory, unless the compiler can prove that all possible

cases are covered with branch conditions (as, for example, with enum class entries and sealed

class subtypes).

If many cases should be handled in the same way, the branch conditions may be combined with a
comma:

when (x) {
 0, 1 -> print("x == 0 or x == 1")
 else -> print("otherwise")
}

We can use arbitrary expressions (not only constants) as branch conditions

when (x) {
 parseInt(s) -> print("s encodes x")
 else -> print("s does not encode x")
}

We can also check a value for being in or !in a range or a collection:

when (x) {
 in 1..10 -> print("x is in the range")
 in validNumbers -> print("x is valid")
 !in 10..20 -> print("x is outside the range")
 else -> print("none of the above")
}

Another possibility is to check that a value is or !is of a particular type. Note that, due to smart

casts, you can access the methods and properties of the type without any extra checks.

fun hasPrefix(x: Any) = when(x) {
 is String -> x.startsWith("prefix")
 else -> false
}

when can also be used as a replacement for an if-else if chain. If no argument is supplied, the

branch conditions are simply boolean expressions, and a branch is executed when its condition is
true:

when {
 x.isOdd() -> print("x is odd")
 x.isEven() -> print("x is even")
 else -> print("x is funny")
}

Since Kotlin 1.3, it is possible to capture when subject in a variable using following syntax:

91

fun Request.getBody() =
 when (val response = executeRequest()) {
 is Success -> response.body
 is HttpError -> throw HttpException(response.status)
 }

Scope of variable, introduced in when subject, is restricted to when body.

See the grammar for when.

for loop iterates through anything that provides an iterator. This is equivalent to the foreach

loop in languages like C#. The syntax is as follows:

for (item in collection) print(item)

The body can be a block.

for (item: Int in ints) {
 // ...
}

As mentioned before, for iterates through anything that provides an iterator, i.e.

has a member- or extension-function iterator() , whose return type

has a member- or extension-function next() , and

has a member- or extension-function hasNext() that returns Boolean .

All of these three functions need to be marked as operator .

To iterate over a range of numbers, use a range expression:

for (i in 1..3) {
 println(i)
}
for (i in 6 downTo 0 step 2) {
 println(i)
}

A for loop over a range or an array is compiled to an index-based loop that does not create an

iterator object.

If you want to iterate through an array or a list with an index, you can do it this way:

for (i in array.indices) {
 println(array[i])
}

Alternatively, you can use the withIndex library function:

For Loops

—

—

—

92

for ((index, value) in array.withIndex()) {
 println("the element at $index is $value")
}

See the grammar for for.

while and do..while work as usual

while (x > 0) {
 x--
}

do {
 val y = retrieveData()
} while (y != null) // y is visible here!

See the grammar for while.

Kotlin supports traditional break and continue operators in loops. See Returns and jumps.

While Loops

Break and continue in loops

93

Kotlin has three structural jump expressions:

return. By default returns from the nearest enclosing function or anonymous function.

break. Terminates the nearest enclosing loop.

continue. Proceeds to the next step of the nearest enclosing loop.

All of these expressions can be used as part of larger expressions:

val s = person.name ?: return

The type of these expressions is the Nothing type.

Any expression in Kotlin may be marked with a label. Labels have the form of an identi er

followed by the @ sign, for example: abc@ , fooBar@ are valid labels (see the grammar). To

label an expression, we just put a label in front of it

loop@ for (i in 1..100) {
 // ...
}

Now, we can qualify a break or a continue with a label:

loop@ for (i in 1..100) {
 for (j in 1..100) {
 if (...) break@loop
 }
}

A break quali ed with a label jumps to the execution point right after the loop marked with that

label. A continue proceeds to the next iteration of that loop.

With function literals, local functions and object expression, functions can be nested in Kotlin.
Quali ed returns allow us to return from an outer function. The most important use case is

returning from a lambda expression. Recall that when we write this:

fun foo() {
 listOf(1, 2, 3, 4, 5).forEach {
 if (it == 3) return // non-local return directly to the caller of foo()
 print(it)
 }
 println("this point is unreachable")
}

Returns and Jumps

—

—

—

Break and Continue Labels

Return at Labels

94

The return-expression returns from the nearest enclosing function, i.e. foo . (Note that such

non-local returns are supported only for lambda expressions passed to inline functions.) If we
need to return from a lambda expression, we have to label it and qualify the return:

fun foo() {
 listOf(1, 2, 3, 4, 5).forEach lit@{
 if (it == 3) return@lit // local return to the caller of the lambda, i.e. the
forEach loop
 print(it)
 }
 print(" done with explicit label")
}

Now, it returns only from the lambda expression. Oftentimes it is more convenient to use implicit
labels: such a label has the same name as the function to which the lambda is passed.

fun foo() {
 listOf(1, 2, 3, 4, 5).forEach {
 if (it == 3) return@forEach // local return to the caller of the lambda, i.e. the
forEach loop
 print(it)
 }
 print(" done with implicit label")
}

Alternatively, we can replace the lambda expression with an anonymous function. A return

statement in an anonymous function will return from the anonymous function itself.

fun foo() {
 listOf(1, 2, 3, 4, 5).forEach(fun(value: Int) {
 if (value == 3) return // local return to the caller of the anonymous fun, i.e.
the forEach loop
 print(value)
 })
 print(" done with anonymous function")
}

Note that the use of local returns in previous three examples is similar to the use of continue in

regular loops. There is no direct equivalent for break, but it can be simulated by adding another

nesting lambda and non-locally returning from it:

fun foo() {
 run loop@{
 listOf(1, 2, 3, 4, 5).forEach {
 if (it == 3) return@loop // non-local return from the lambda passed to run
 print(it)
 }
 }
 print(" done with nested loop")
}

When returning a value, the parser gives preference to the quali ed return, i.e.

return@a 1

95

means "return 1 at label @a " and not "return a labeled expression (@a 1) ".

96

Classes and Objects

Classes in Kotlin are declared using the keyword class:

class Invoice { /*...*/ }

The class declaration consists of the class name, the class header (specifying its type parameters,
the primary constructor etc.) and the class body, surrounded by curly braces. Both the header
and the body are optional; if the class has no body, curly braces can be omitted.

class Empty

A class in Kotlin can have a primary constructor and one or more secondary constructors. The
primary constructor is part of the class header: it goes after the class name (and optional type
parameters).

class Person constructor(firstName: String) { /*...*/ }

If the primary constructor does not have any annotations or visibility modi ers, the
constructor keyword can be omitted:

class Person(firstName: String) { /*...*/ }

The primary constructor cannot contain any code. Initialization code can be placed in initializer
blocks, which are pre xed with the init keyword.

During an instance initialization, the initializer blocks are executed in the same order as they
appear in the class body, interleaved with the property initializers:

Classes and Inheritance

Classes

Constructors

97

class InitOrderDemo(name: String) {
 val firstProperty = "First property: $name".also(::println)

 init {
 println("First initializer block that prints ${name}")
 }

 val secondProperty = "Second property: ${name.length}".also(::println)

 init {
 println("Second initializer block that prints ${name.length}")
 }
}

Note that parameters of the primary constructor can be used in the initializer blocks. They can
also be used in property initializers declared in the class body:

class Customer(name: String) {
 val customerKey = name.toUpperCase()
}

In fact, for declaring properties and initializing them from the primary constructor, Kotlin has a
concise syntax:

class Person(val firstName: String, val lastName: String, var age: Int) { /*...*/ }

Much the same way as regular properties, the properties declared in the primary constructor can
be mutable (var) or read-only (val).

If the constructor has annotations or visibility modi ers, the constructor keyword is required,

and the modi ers go before it:

class Customer public @Inject constructor(name: String) { /*...*/ }

For more details, see Visibility Modi ers.

The class can also declare secondary constructors, which are pre xed with constructor:

class Person {
 var children: MutableList<Person> = mutableListOf<Person>();
 constructor(parent: Person) {
 parent.children.add(this)
 }
}

If the class has a primary constructor, each secondary constructor needs to delegate to the
primary constructor, either directly or indirectly through another secondary constructor(s).
Delegation to another constructor of the same class is done using the this keyword:

Secondary constructors

98

class Person(val name: String) {
 var children: MutableList<Person> = mutableListOf<Person>();
 constructor(name: String, parent: Person) : this(name) {
 parent.children.add(this)
 }
}

Note that code in initializer blocks e ectively becomes part of the primary constructor.
Delegation to the primary constructor happens as the rst statement of a secondary constructor,
so the code in all initializer blocks is executed before the secondary constructor body. Even if the
class has no primary constructor, the delegation still happens implicitly, and the initializer blocks
are still executed:

class Constructors {
 init {
 println("Init block")
 }

 constructor(i: Int) {
 println("Constructor")
 }
}

If a non-abstract class does not declare any constructors (primary or secondary), it will have a
generated primary constructor with no arguments. The visibility of the constructor will be public.
If you do not want your class to have a public constructor, you need to declare an empty primary
constructor with non-default visibility:

class DontCreateMe private constructor () { /*...*/ }

NOTE: On the JVM, if all of the parameters of the primary constructor have default values,
the compiler will generate an additional parameterless constructor which will use the default
values. This makes it easier to use Kotlin with libraries such as Jackson or JPA that create class
instances through parameterless constructors.

class Customer(val customerName: String = "")

To create an instance of a class, we call the constructor as if it were a regular function:

val invoice = Invoice()

val customer = Customer("Joe Smith")

Note that Kotlin does not have a new keyword.

Creating instances of nested, inner and anonymous inner classes is described in Nested classes.

Creating instances of classes

99

Classes can contain:

Constructors and initializer blocks

Functions

Properties

Nested and Inner Classes

Object Declarations

All classes in Kotlin have a common superclass Any , that is the default superclass for a class with

no supertypes declared:

class Example // Implicitly inherits from Any

Any has three methods: equals() , hashCode() and toString() . Thus, they are de ned

for all Kotlin classes.

To declare an explicit supertype, place the type after a colon in the class header:

open class Base(p: Int)

class Derived(p: Int) : Base(p)

If the derived class has a primary constructor, the base class can (and must) be initialized right
there, using the parameters of the primary constructor.

If the derived class has no primary constructor, then each secondary constructor has to initialize
the base type using the super keyword, or to delegate to another constructor which does that.

Note that in this case di erent secondary constructors can call di erent constructors of the base
type:

class MyView : View {
 constructor(ctx: Context) : super(ctx)

 constructor(ctx: Context, attrs: AttributeSet) : super(ctx, attrs)
}

As we mentioned before, we stick to making things explicit in Kotlin. So, Kotlin requires explicit
modi ers for overridable members (we call them open) and for overrides:

Class members

—

—

—

—

—

Inheritance

Overriding methods

100

open class Shape {
 open fun draw() { /*...*/ }
 fun fill() { /*...*/ }
}

class Circle() : Shape() {
 override fun draw() { /*...*/ }
}

The override modi er is required for Circle.draw() . If it were missing, the compiler would

complain. If there is no open modi er on a function, like Shape.fill() , declaring a method

with the same signature in a subclass is illegal, either with override or without it. The open

modi er has no e ect when added on members of a nal class (i.e.. a class with no open

modi er).

A member marked override is itself open, i.e. it may be overridden in subclasses. If you want to

prohibit re-overriding, use final:

open class Rectangle() : Shape() {
 final override fun draw() { /*...*/ }
}

Overriding properties works in a similar way to overriding methods; properties declared on a
superclass that are then redeclared on a derived class must be prefaced with override, and

they must have a compatible type. Each declared property can be overridden by a property with
an initializer or by a property with a get method.

open class Shape {
 open val vertexCount: Int = 0
}

class Rectangle : Shape() {
 override val vertexCount = 4
}

You can also override a val property with a var property, but not vice versa. This is allowed

because a val property essentially declares a get method, and overriding it as a var

additionally declares a set method in the derived class.

Note that you can use the override keyword as part of the property declaration in a primary

constructor.

Overriding properties

101

interface Shape {
 val vertexCount: Int
}

class Rectangle(override val vertexCount: Int = 4) : Shape // Always has 4 vertices

class Polygon : Shape {
 override var vertexCount: Int = 0 // Can be set to any number later
}

During construction of a new instance of a derived class, the base class initialization is done as
the rst step (preceded only by evaluation of the arguments for the base class constructor) and
thus happens before the initialization logic of the derived class is run.

open class Base(val name: String) {

 init { println("Initializing Base") }

 open val size: Int =
 name.length.also { println("Initializing size in Base: $it") }
}

class Derived(
 name: String,
 val lastName: String
) : Base(name.capitalize().also { println("Argument for Base: $it") }) {

 init { println("Initializing Derived") }

 override val size: Int =
 (super.size + lastName.length).also { println("Initializing size in Derived:
$it") }
}

It means that, by the time of the base class constructor execution, the properties declared or
overridden in the derived class are not yet initialized. If any of those properties are used in the
base class initialization logic (either directly or indirectly, through another overridden open

member implementation), it may lead to incorrect behavior or a runtime failure. When designing
a base class, you should therefore avoid using open members in the constructors, property

initializers, and init blocks.

Code in a derived class can call its superclass functions and property accessors implementations
using the super keyword:

Derived class initialization order

Calling the superclass implementation

102

 open class Rectangle {
 open fun draw() { println("Drawing a rectangle") }
 val borderColor: String get() = "black"
 }

 class FilledRectangle : Rectangle() {
 override fun draw() {
 super.draw()
 println("Filling the rectangle")
 }

 val fillColor: String get() = super.borderColor
 }

Inside an inner class, accessing the superclass of the outer class is done with the super keyword

quali ed with the outer class name: super@Outer :

class FilledRectangle: Rectangle() {
 fun draw() { /* ... */ }
 val borderColor: String get() = "black"

 inner class Filler {
 fun fill() { /* ... */ }
 fun drawAndFill() {
 super@FilledRectangle.draw() // Calls Rectangle's implementation of draw()
 fill()
 println("Drawn a filled rectangle with color
${super@FilledRectangle.borderColor}") // Uses Rectangle's implementation of
borderColor's get()
 }
 }
}

In Kotlin, implementation inheritance is regulated by the following rule: if a class inherits many
implementations of the same member from its immediate superclasses, it must override this
member and provide its own implementation (perhaps, using one of the inherited ones). To
denote the supertype from which the inherited implementation is taken, we use super quali ed

by the supertype name in angle brackets, e.g. super<Base> :

Overriding rules

103

open class Rectangle {
 open fun draw() { /* ... */ }
}

interface Polygon {
 fun draw() { /* ... */ } // interface members are 'open' by default
}

class Square() : Rectangle(), Polygon {
 // The compiler requires draw() to be overridden:
 override fun draw() {
 super<Rectangle>.draw() // call to Rectangle.draw()
 super<Polygon>.draw() // call to Polygon.draw()
 }
}

It's ne to inherit from both Rectangle and Polygon , but both of them have their

implementations of draw() , so we have to override draw() in Square and provide its own

implementation that eliminates the ambiguity.

A class and some of its members may be declared abstract. An abstract member does not have

an implementation in its class. Note that we do not need to annotate an abstract class or function
with open – it goes without saying.

We can override a non-abstract open member with an abstract one

open class Polygon {
 open fun draw() {}
}

abstract class Rectangle : Polygon() {
 override abstract fun draw()
}

If you need to write a function that can be called without having a class instance but needs access
to the internals of a class (for example, a factory method), you can write it as a member of an
object declaration inside that class.

Even more speci cally, if you declare a companion object inside your class, you'll be able to call
its members using only the class name as a quali er.

Abstract classes

Companion objects

104

Properties in Kotlin classes can be declared either as mutable using the var keyword, or as read-

only using the val keyword.

class Address {
 var name: String = "Holmes, Sherlock"
 var street: String = "Baker"
 var city: String = "London"
 var state: String? = null
 var zip: String = "123456"
}

To use a property, simply refer to it by name:

fun copyAddress(address: Address): Address {
 val result = Address() // there's no 'new' keyword in Kotlin
 result.name = address.name // accessors are called
 result.street = address.street
 // ...
 return result
}

The full syntax for declaring a property is

var <propertyName>[: <PropertyType>] [= <property_initializer>]
 [<getter>]
 [<setter>]

The initializer, getter and setter are optional. Property type is optional if it can be inferred from
the initializer (or from the getter return type, as shown below).

Examples:

var allByDefault: Int? // error: explicit initializer required, default getter and setter
implied
var initialized = 1 // has type Int, default getter and setter

The full syntax of a read-only property declaration di ers from a mutable one in two ways: it
starts with val instead of var and does not allow a setter:

val simple: Int? // has type Int, default getter, must be initialized in constructor
val inferredType = 1 // has type Int and a default getter

We can de ne custom accessors for a property. If we de ne a custom getter, it will be called
every time we access the property (this allows us to implement a computed property). Here's an
example of a custom getter:

Properties and Fields

Declaring Properties

Getters and Setters

105

val isEmpty: Boolean
 get() = this.size == 0

If we de ne a custom setter, it will be called every time we assign a value to the property. A
custom setter looks like this:

var stringRepresentation: String
 get() = this.toString()
 set(value) {
 setDataFromString(value) // parses the string and assigns values to other
properties
 }

By convention, the name of the setter parameter is value , but you can choose a di erent name

if you prefer.

Since Kotlin 1.1, you can omit the property type if it can be inferred from the getter:

val isEmpty get() = this.size == 0 // has type Boolean

If you need to change the visibility of an accessor or to annotate it, but don't need to change the
default implementation, you can de ne the accessor without de ning its body:

var setterVisibility: String = "abc"
 private set // the setter is private and has the default implementation

var setterWithAnnotation: Any? = null
 @Inject set // annotate the setter with Inject

Fields cannot be declared directly in Kotlin classes. However, when a property needs a backing
eld, Kotlin provides it automatically. This backing eld can be referenced in the accessors using

the field identi er:

var counter = 0 // Note: the initializer assigns the backing field directly
 set(value) {
 if (value >= 0) field = value
 }

The field identi er can only be used in the accessors of the property.

A backing eld will be generated for a property if it uses the default implementation of at least
one of the accessors, or if a custom accessor references it through the field identi er.

For example, in the following case there will be no backing eld:

val isEmpty: Boolean
 get() = this.size == 0

Backing Fields

Backing Properties

106

If you want to do something that does not t into this "implicit backing eld" scheme, you can
always fall back to having a backing property:

private var _table: Map<String, Int>? = null
public val table: Map<String, Int>
 get() {
 if (_table == null) {
 _table = HashMap() // Type parameters are inferred
 }
 return _table ?: throw AssertionError("Set to null by another thread")
 }

On the JVM: The access to private properties with default getters and setters is optimized so
no function call overhead is introduced in this case.

Properties the value of which is known at compile time can be marked as compile time constants
using the const modi er. Such properties need to ful l the following requirements:

Top-level, or member of an object declaration or a companion object.

Initialized with a value of type String or a primitive type

No custom getter

Such properties can be used in annotations:

const val SUBSYSTEM_DEPRECATED: String = "This subsystem is deprecated"

@Deprecated(SUBSYSTEM_DEPRECATED) fun foo() { ... }

Normally, properties declared as having a non-null type must be initialized in the constructor.
However, fairly often this is not convenient. For example, properties can be initialized through
dependency injection, or in the setup method of a unit test. In this case, you cannot supply a non-
null initializer in the constructor, but you still want to avoid null checks when referencing the
property inside the body of a class.

To handle this case, you can mark the property with the lateinit modi er:

public class MyTest {
 lateinit var subject: TestSubject

 @SetUp fun setup() {
 subject = TestSubject()
 }

 @Test fun test() {
 subject.method() // dereference directly
 }
}

Compile-Time Constants

—

—

—

Late-Initialized Properties and Variables

107

The modi er can be used on var properties declared inside the body of a class (not in the

primary constructor, and only when the property does not have a custom getter or setter) and,
since Kotlin 1.2, for top-level properties and local variables. The type of the property or variable
must be non-null, and it must not be a primitive type.

Accessing a lateinit property before it has been initialized throws a special exception that

clearly identi es the property being accessed and the fact that it hasn't been initialized.

To check whether a lateinit var has already been initialized, use .isInitialized on the

reference to that property:

if (foo::bar.isInitialized) {
 println(foo.bar)
}

This check is only available for the properties that are lexically accessible, i.e. declared in the
same type or in one of the outer types, or at top level in the same le.

See Overriding Properties

The most common kind of properties simply reads from (and maybe writes to) a backing eld. On
the other hand, with custom getters and setters one can implement any behaviour of a property.
Somewhere in between, there are certain common patterns of how a property may work. A few
examples: lazy values, reading from a map by a given key, accessing a database, notifying listener
on access, etc.

Such common behaviours can be implemented as libraries using delegated properties.

Checking whether a lateinit var is initialized (since 1.2)

Overriding Properties

Delegated Properties

108

Interfaces in Kotlin can contain declarations of abstract methods, as well as method
implementations. What makes them di erent from abstract classes is that interfaces cannot store
state. They can have properties but these need to be abstract or to provide accessor
implementations.

An interface is de ned using the keyword interface

interface MyInterface {
 fun bar()
 fun foo() {
 // optional body
 }
}

A class or object can implement one or more interfaces

class Child : MyInterface {
 override fun bar() {
 // body
 }
}

You can declare properties in interfaces. A property declared in an interface can either be
abstract, or it can provide implementations for accessors. Properties declared in interfaces can't
have backing elds, and therefore accessors declared in interfaces can't reference them.

interface MyInterface {
 val prop: Int // abstract

 val propertyWithImplementation: String
 get() = "foo"

 fun foo() {
 print(prop)
 }
}

class Child : MyInterface {
 override val prop: Int = 29
}

An interface can derive from other interfaces and thus both provide implementations for their
members and declare new functions and properties. Quite naturally, classes implementing such
an interface are only required to de ne the missing implementations:

Interfaces

Implementing Interfaces

Properties in Interfaces

Interfaces Inheritance

109

interface Named {
 val name: String
}

interface Person : Named {
 val firstName: String
 val lastName: String

 override val name: String get() = "$firstName $lastName"
}

data class Employee(
 // implementing 'name' is not required
 override val firstName: String,
 override val lastName: String,
 val position: Position
) : Person

When we declare many types in our supertype list, it may appear that we inherit more than one
implementation of the same method. For example

interface A {
 fun foo() { print("A") }
 fun bar()
}

interface B {
 fun foo() { print("B") }
 fun bar() { print("bar") }
}

class C : A {
 override fun bar() { print("bar") }
}

class D : A, B {
 override fun foo() {
 super<A>.foo()
 super.foo()
 }

 override fun bar() {
 super.bar()
 }
}

Interfaces A and B both declare functions foo() and bar(). Both of them implement foo(), but only B
implements bar() (bar() is not marked abstract in A, because this is the default for interfaces, if the
function has no body). Now, if we derive a concrete class C from A, we, obviously, have to
override bar() and provide an implementation.

Resolving overriding con icts

110

However, if we derive D from A and B, we need to implement all the methods which we have
inherited from multiple interfaces, and to specify how exactly D should implement them. This
rule applies both to methods for which we've inherited a single implementation (bar()) and
multiple implementations (foo()).

111

Classes, objects, interfaces, constructors, functions, properties and their setters can have visibility
modi ers. (Getters always have the same visibility as the property.) There are four visibility
modi ers in Kotlin: private , protected , internal and public . The default visibility, used

if there is no explicit modi er, is public .

Below please nd explanations of how the modi ers apply to di erent types of declaring scopes.

Functions, properties and classes, objects and interfaces can be declared on the "top-level", i.e.
directly inside a package:

// file name: example.kt
package foo

fun baz() { ... }
class Bar { ... }

If you do not specify any visibility modi er, public is used by default, which means that your

declarations will be visible everywhere;

If you mark a declaration private , it will only be visible inside the le containing the

declaration;

If you mark it internal , it is visible everywhere in the same module;

protected is not available for top-level declarations.

Note: to use a visible top-level declaration from another package, you should still import it.

Examples:

// file name: example.kt
package foo

private fun foo() { ... } // visible inside example.kt

public var bar: Int = 5 // property is visible everywhere
 private set // setter is visible only in example.kt

internal val baz = 6 // visible inside the same module

For members declared inside a class:

private means visible inside this class only (including all its members);

protected — same as private + visible in subclasses too;

internal — any client inside this module who sees the declaring class sees its internal

members;

Visibility Modi ers

Packages

—

—

—

—

Classes and Interfaces

—

—

—

112

public — any client who sees the declaring class sees its public members.

Note that in Kotlin, outer class does not see private members of its inner classes.

If you override a protected member and do not specify the visibility explicitly, the overriding

member will also have protected visibility.

Examples:

open class Outer {
 private val a = 1
 protected open val b = 2
 internal val c = 3
 val d = 4 // public by default

 protected class Nested {
 public val e: Int = 5
 }
}

class Subclass : Outer() {
 // a is not visible
 // b, c and d are visible
 // Nested and e are visible

 override val b = 5 // 'b' is protected
}

class Unrelated(o: Outer) {
 // o.a, o.b are not visible
 // o.c and o.d are visible (same module)
 // Outer.Nested is not visible, and Nested::e is not visible either
}

To specify a visibility of the primary constructor of a class, use the following syntax (note that you
need to add an explicit constructor keyword):

class C private constructor(a: Int) { ... }

Here the constructor is private. By default, all constructors are public , which e ectively

amounts to them being visible everywhere where the class is visible (i.e. a constructor of an
internal class is only visible within the same module).

Local variables, functions and classes can not have visibility modi ers.

The internal visibility modi er means that the member is visible within the same module.

More speci cally, a module is a set of Kotlin les compiled together:

—

Constructors

Local declarations

Modules

113

an IntelliJ IDEA module;

a Maven project;

a Gradle source set (with the exception that the test source set can access the internal

declarations of main);

a set of les compiled with one invocation of the <kotlinc> Ant task.

—

—

—

—

114

Kotlin provides the ability to extend a class with new functionality without having to inherit from
the class or use design patterns such as Decorator. This is done via special declarations called
extensions. For example, you can write new functions for a class from a third-party library that you
can't modify. Such functions are available for calling in the usual way as if they were methods of
the original class. This mechanism is called extension functions. There are also extension properties
that let you de ne new properties for existing classes.

To declare an extension function, we need to pre x its name with a receiver type, i.e. the type
being extended. The following adds a swap function to MutableList<Int> :

fun MutableList<Int>.swap(index1: Int, index2: Int) {
 val tmp = this[index1] // 'this' corresponds to the list
 this[index1] = this[index2]
 this[index2] = tmp
}

The this keyword inside an extension function corresponds to the receiver object (the one that

is passed before the dot). Now, we can call such a function on any MutableList<Int> :

val list = mutableListOf(1, 2, 3)
list.swap(0, 2) // 'this' inside 'swap()' will hold the value of 'list'

Of course, this function makes sense for any MutableList<T> , and we can make it generic:

fun <T> MutableList<T>.swap(index1: Int, index2: Int) {
 val tmp = this[index1] // 'this' corresponds to the list
 this[index1] = this[index2]
 this[index2] = tmp
}

We declare the generic type parameter before the function name for it to be available in the
receiver type expression. See Generic functions.

Extensions do not actually modify classes they extend. By de ning an extension, you do not
insert new members into a class, but merely make new functions callable with the dot-notation
on variables of this type.

We would like to emphasize that extension functions are dispatched statically, i.e. they are not
virtual by receiver type. This means that the extension function being called is determined by the
type of the expression on which the function is invoked, not by the type of the result of
evaluating that expression at runtime. For example:

Extensions

Extension functions

Extensions are resolved statically

115

open class Shape

class Rectangle: Shape()

fun Shape.getName() = "Shape"

fun Rectangle.getName() = "Rectangle"

fun printClassName(s: Shape) {
 println(s.getName())
}

printClassName(Rectangle())

This example prints "Shape", because the extension function being called depends only on the
declared type of the parameter s , which is the Shape class.

If a class has a member function, and an extension function is de ned which has the same
receiver type, the same name, and is applicable to given arguments, the member always wins.
For example:

class Example {
 fun printFunctionType() { println("Class method") }
}

fun Example.printFunctionType() { println("Extension function") }

Example().printFunctionType()

This code prints "Class method".

However, it's perfectly OK for extension functions to overload member functions which have the
same name but a di erent signature:

class Example {
 fun printFunctionType() { println("Class method") }
}

fun Example.printFunctionType(i: Int) { println("Extension function") }

Example().printFunctionType(1)

Note that extensions can be de ned with a nullable receiver type. Such extensions can be called
on an object variable even if its value is null, and can check for this == null inside the body.

This is what allows you to call toString() in Kotlin without checking for null: the check happens
inside the extension function.

Nullable receiver

116

fun Any?.toString(): String {
 if (this == null) return "null"
 // after the null check, 'this' is autocast to a non-null type, so the toString()
below
 // resolves to the member function of the Any class
 return toString()
}

Similarly to functions, Kotlin supports extension properties:

val <T> List<T>.lastIndex: Int
 get() = size - 1

Note that, since extensions do not actually insert members into classes, there's no e cient way
for an extension property to have a backing eld. This is why initializers are not allowed for
extension properties. Their behavior can only be de ned by explicitly providing getters/setters.

Example:

val House.number = 1 // error: initializers are not allowed for extension properties

If a class has a companion object de ned, you can also de ne extension functions and properties
for the companion object. Just like regular members of the companion object, they can be called
using only the class name as the quali er:

class MyClass {
 companion object { } // will be called "Companion"
}

fun MyClass.Companion.printCompanion() { println("companion") }

fun main() {
 MyClass.printCompanion()
}

Most of the time we de ne extensions on the top level - directly under packages:

package org.example.declarations

fun List<String>.getLongestString() { /*...*/}

To use such an extension outside its declaring package, we need to import it at the call site:

Extension properties

Companion object extensions

Scope of extensions

117

package org.example.usage

import org.example.declarations.getLongestString

fun main() {
 val list = listOf("red", "green", "blue")
 list.getLongestString()
}

See Imports for more information.

Inside a class, you can declare extensions for another class. Inside such an extension, there are
multiple implicit receivers - objects members of which can be accessed without a quali er. The
instance of the class in which the extension is declared is called dispatch receiver, and the instance
of the receiver type of the extension method is called extension receiver.

class Host(val hostname: String) {
 fun printHostname() { print(hostname) }
}

class Connection(val host: Host, val port: Int) {
 fun printPort() { print(port) }

 fun Host.printConnectionString(p: Int) {
 printHostname() // calls Host.printHostname()
 print(":")
 printPort() // calls Connection.printPort()
 }

 fun connect() {
 /*...*/
 host.printConnectionString(port) // calls the extension function
 }
}

fun main() {
 Connection(Host("kotl.in"), 443).connect()
 //Host("kotl.in").printConnectionString(443) // error, the extension function is
unavailable outside Connection
}

In case of a name con ict between the members of the dispatch receiver and the extension
receiver, the extension receiver takes precedence. To refer to the member of the dispatch
receiver you can use the quali ed this syntax.

class Connection {
 fun Host.getConnectionString() {
 toString() // calls Host.toString()
 this@Connection.toString() // calls Connection.toString()
 }
}

Declaring extensions as members

118

Extensions declared as members can be declared as open and overridden in subclasses. This

means that the dispatch of such functions is virtual with regard to the dispatch receiver type, but
static with regard to the extension receiver type.

open class Base { }

class Derived : Base() { }

open class BaseCaller {
 open fun Base.printFunctionInfo() {
 println("Base extension function in BaseCaller")
 }

 open fun Derived.printFunctionInfo() {
 println("Derived extension function in BaseCaller")
 }

 fun call(b: Base) {
 b.printFunctionInfo() // call the extension function
 }
}

class DerivedCaller: BaseCaller() {
 override fun Base.printFunctionInfo() {
 println("Base extension function in DerivedCaller")
 }

 override fun Derived.printFunctionInfo() {
 println("Derived extension function in DerivedCaller")
 }
}

fun main() {
 BaseCaller().call(Base()) // "Base extension function in BaseCaller"
 DerivedCaller().call(Base()) // "Base extension function in DerivedCaller" -
dispatch receiver is resolved virtually
 DerivedCaller().call(Derived()) // "Base extension function in DerivedCaller" -
extension receiver is resolved statically
}

Extensions utilize the same visibility of other entities as regular functions declared in the same
scope would. For example:

An extension declared on top level of a le has access to the other private top-level

declarations in the same le;

If an extension is declared outside its receiver type, such an extension cannot access the
receiver's private members.

Note on visibility

—

—

119

We frequently create classes whose main purpose is to hold data. In such a class some standard
functionality and utility functions are often mechanically derivable from the data. In Kotlin, this is
called a data class and is marked as data :

data class User(val name: String, val age: Int)

The compiler automatically derives the following members from all properties declared in the
primary constructor:

equals() / hashCode() pair;

toString() of the form "User(name=John, age=42)" ;

componentN() functions corresponding to the properties in their order of declaration;

copy() function (see below).

To ensure consistency and meaningful behavior of the generated code, data classes have to ful ll
the following requirements:

The primary constructor needs to have at least one parameter;

All primary constructor parameters need to be marked as val or var ;

Data classes cannot be abstract, open, sealed or inner;

(before 1.1) Data classes may only implement interfaces.

Additionally, the members generation follows these rules with regard to the members
inheritance:

If there are explicit implementations of equals() , hashCode() or toString() in the

data class body or final implementations in a superclass, then these functions are not

generated, and the existing implementations are used;

If a supertype has the componentN() functions that are open and return compatible types,

the corresponding functions are generated for the data class and override those of the
supertype. If the functions of the supertype cannot be overridden due to incompatible
signatures or being nal, an error is reported;

Deriving a data class from a type that already has a copy(...) function with a matching

signature is deprecated in Kotlin 1.2 and is prohibited in Kotlin 1.3.

Providing explicit implementations for the componentN() and copy() functions is not

allowed.

Since 1.1, data classes may extend other classes (see Sealed classes for examples).

On the JVM, if the generated class needs to have a parameterless constructor, default values for
all properties have to be speci ed (see Constructors).

Data Classes

—

—

—

—

—

—

—

—

—

—

—

—

120

data class User(val name: String = "", val age: Int = 0)

Note that the compiler only uses the properties de ned inside the primary constructor for the
automatically generated functions. To exclude a property from the generated implementations,
declare it inside the class body:

data class Person(val name: String) {
 var age: Int = 0
}

Only the property name will be used inside the toString() , equals() , hashCode() , and

copy() implementations, and there will only be one component function component1() .

While two Person objects can have di erent ages, they will be treated as equal.

val person1 = Person("John")
val person2 = Person("John")
person1.age = 10
person2.age = 20

It's often the case that we need to copy an object altering some of its properties, but keeping the
rest unchanged. This is what copy() function is generated for. For the User class above, its

implementation would be as follows:

fun copy(name: String = this.name, age: Int = this.age) = User(name, age)

This allows us to write:

val jack = User(name = "Jack", age = 1)
val olderJack = jack.copy(age = 2)

Component functions generated for data classes enable their use in destructuring declarations:

val jane = User("Jane", 35)
val (name, age) = jane
println("$name, $age years of age") // prints "Jane, 35 years of age"

The standard library provides Pair and Triple . In most cases, though, named data classes are

a better design choice, because they make the code more readable by providing meaningful
names for properties.

Properties Declared in the Class Body

Copying

Data Classes and Destructuring Declarations

Standard Data Classes

121

Sealed classes are used for representing restricted class hierarchies, when a value can have one
of the types from a limited set, but cannot have any other type. They are, in a sense, an extension
of enum classes: the set of values for an enum type is also restricted, but each enum constant
exists only as a single instance, whereas a subclass of a sealed class can have multiple instances
which can contain state.

To declare a sealed class, you put the sealed modi er before the name of the class. A sealed

class can have subclasses, but all of them must be declared in the same le as the sealed class
itself. (Before Kotlin 1.1, the rules were even more strict: classes had to be nested inside the
declaration of the sealed class).

sealed class Expr
data class Const(val number: Double) : Expr()
data class Sum(val e1: Expr, val e2: Expr) : Expr()
object NotANumber : Expr()

(The example above uses one additional new feature of Kotlin 1.1: the possibility for data classes
to extend other classes, including sealed classes.)

A sealed class is abstract by itself, it cannot be instantiated directly and can have abstract

members.

Sealed classes are not allowed to have non-private constructors (their constructors are

private by default).

Note that classes which extend subclasses of a sealed class (indirect inheritors) can be placed
anywhere, not necessarily in the same le.

The key bene t of using sealed classes comes into play when you use them in a when expression.

If it's possible to verify that the statement covers all cases, you don't need to add an else clause

to the statement. However, this works only if you use when as an expression (using the result)

and not as a statement.

fun eval(expr: Expr): Double = when(expr) {
 is Const -> expr.number
 is Sum -> eval(expr.e1) + eval(expr.e2)
 NotANumber -> Double.NaN
 // the `else` clause is not required because we've covered all the cases
}

Sealed Classes

122

As in Java, classes in Kotlin may have type parameters:

class Box<T>(t: T) {
 var value = t
}

In general, to create an instance of such a class, we need to provide the type arguments:

val box: Box<Int> = Box<Int>(1)

But if the parameters may be inferred, e.g. from the constructor arguments or by some other
means, one is allowed to omit the type arguments:

val box = Box(1) // 1 has type Int, so the compiler figures out that we are talking about
Box<Int>

One of the most tricky parts of Java's type system is wildcard types (see Java Generics FAQ). And
Kotlin doesn't have any. Instead, it has two other things: declaration-site variance and type
projections.

First, let's think about why Java needs those mysterious wildcards. The problem is explained in
E ective Java, 3rd Edition, Item 31: Use bounded wildcards to increase API exibility. First, generic
types in Java are invariant, meaning that List<String> is not a subtype of List<Object> .

Why so? If List was not invariant, it would have been no better than Java's arrays, since the
following code would have compiled and caused an exception at runtime:

// Java
List<String> strs = new ArrayList<String>();
List<Object> objs = strs; // !!! The cause of the upcoming problem sits here. Java
prohibits this!
objs.add(1); // Here we put an Integer into a list of Strings
String s = strs.get(0); // !!! ClassCastException: Cannot cast Integer to String

So, Java prohibits such things in order to guarantee run-time safety. But this has some
implications. For example, consider the addAll() method from Collection interface. What's

the signature of this method? Intuitively, we'd put it this way:

// Java
interface Collection<E> ... {
 void addAll(Collection<E> items);
}

But then, we would not be able to do the following simple thing (which is perfectly safe):

Generics

Variance

123

http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html
http://www.oracle.com/technetwork/java/effectivejava-136174.html

// Java
void copyAll(Collection<Object> to, Collection<String> from) {
 to.addAll(from);
 // !!! Would not compile with the naive declaration of addAll:
 // Collection<String> is not a subtype of Collection<Object>
}

(In Java, we learned this lesson the hard way, see E ective Java, 3rd Edition, Item 28: Prefer lists to
arrays)

That's why the actual signature of addAll() is the following:

// Java
interface Collection<E> ... {
 void addAll(Collection<? extends E> items);
}

The wildcard type argument ? extends E indicates that this method accepts a collection of

objects of E or some subtype of E , not just E itself. This means that we can safely read E 's from

items (elements of this collection are instances of a subclass of E), but cannot write to it since we
do not know what objects comply to that unknown subtype of E . In return for this limitation, we

have the desired behaviour: Collection<String> is a subtype of Collection<? extends

Object> . In "clever words", the wildcard with an extends-bound (upper bound) makes the type

covariant.

The key to understanding why this trick works is rather simple: if you can only take items from a
collection, then using a collection of String s and reading Object s from it is ne. Conversely,

if you can only put items into the collection, it's OK to take a collection of Object s and put

String s into it: in Java we have List<? super String> a supertype of List<Object> .

The latter is called contravariance, and you can only call methods that take String as an
argument on List<? super String> (e.g., you can call add(String) or set(int,

String)), while if you call something that returns T in List<T> , you don't get a String , but

an Object .

Joshua Bloch calls those objects you only read from Producers, and those you only write to
Consumers. He recommends: "For maximum exibility, use wildcard types on input parameters that
represent producers or consumers", and proposes the following mnemonic:

PECS stands for Producer-Extends, Consumer-Super.

NOTE: if you use a producer-object, say, List<? extends Foo> , you are not allowed to call

add() or set() on this object, but this does not mean that this object is immutable: for

example, nothing prevents you from calling clear() to remove all items from the list, since

clear() does not take any parameters at all. The only thing guaranteed by wildcards (or other

types of variance) is type safety. Immutability is a completely di erent story.

124

http://www.oracle.com/technetwork/java/effectivejava-136174.html

Suppose we have a generic interface Source<T> that does not have any methods that take T

as a parameter, only methods that return T :

// Java
interface Source<T> {
 T nextT();
}

Then, it would be perfectly safe to store a reference to an instance of Source<String> in a

variable of type Source<Object> – there are no consumer-methods to call. But Java does not

know this, and still prohibits it:

// Java
void demo(Source<String> strs) {
 Source<Object> objects = strs; // !!! Not allowed in Java
 // ...
}

To x this, we have to declare objects of type Source<? extends Object> , which is sort of

meaningless, because we can call all the same methods on such a variable as before, so there's
no value added by the more complex type. But the compiler does not know that.

In Kotlin, there is a way to explain this sort of thing to the compiler. This is called declaration-site
variance: we can annotate the type parameter T of Source to make sure that it is only

returned (produced) from members of Source<T> , and never consumed. To do this we

provide the out modi er:

interface Source<out T> {
 fun nextT(): T
}

fun demo(strs: Source<String>) {
 val objects: Source<Any> = strs // This is OK, since T is an out-parameter
 // ...
}

The general rule is: when a type parameter T of a class C is declared out, it may occur only in

out-position in the members of C , but in return C<Base> can safely be a supertype of

C<Derived> .

In "clever words" they say that the class C is covariant in the parameter T , or that T is a

covariant type parameter. You can think of C as being a producer of T 's, and NOT a consumer
of T 's.

The out modi er is called a variance annotation, and since it is provided at the type parameter
declaration site, we talk about declaration-site variance. This is in contrast with Java's use-site
variance where wildcards in the type usages make the types covariant.

Declaration-site variance

125

In addition to out, Kotlin provides a complementary variance annotation: in. It makes a type
parameter contravariant: it can only be consumed and never produced. A good example of a
contravariant type is Comparable :

interface Comparable<in T> {
 operator fun compareTo(other: T): Int
}

fun demo(x: Comparable<Number>) {
 x.compareTo(1.0) // 1.0 has type Double, which is a subtype of Number
 // Thus, we can assign x to a variable of type Comparable<Double>
 val y: Comparable<Double> = x // OK!
}

We believe that the words in and out are self-explaining (as they were successfully used in C# for
quite some time already), thus the mnemonic mentioned above is not really needed, and one can
rephrase it for a higher purpose:

The Existential Transformation: Consumer in, Producer out! :-)

It is very convenient to declare a type parameter T as out and avoid trouble with subtyping on the
use site, but some classes can't actually be restricted to only return T 's! A good example of this

is Array:

class Array<T>(val size: Int) {
 fun get(index: Int): T { ... }
 fun set(index: Int, value: T) { ... }
}

This class cannot be either co- or contravariant in T . And this imposes certain in exibilities.

Consider the following function:

fun copy(from: Array<Any>, to: Array<Any>) {
 assert(from.size == to.size)
 for (i in from.indices)
 to[i] = from[i]
}

This function is supposed to copy items from one array to another. Let's try to apply it in practice:

val ints: Array<Int> = arrayOf(1, 2, 3)
val any = Array<Any>(3) { "" }
copy(ints, any)
// ^ type is Array<Int> but Array<Any> was expected

Type projections

Use-site variance: Type projections

126

http://en.wikipedia.org/wiki/Existentialism

Here we run into the same familiar problem: Array<T> is invariant in T , thus neither of

Array<Int> and Array<Any> is a subtype of the other. Why? Again, because copy might be

doing bad things, i.e. it might attempt to write, say, a String to from , and if we actually passed an

array of Int there, a ClassCastException would have been thrown sometime later.

Then, the only thing we want to ensure is that copy() does not do any bad things. We want to

prohibit it from writing to from , and we can:

fun copy(from: Array<out Any>, to: Array<Any>) { ... }

What has happened here is called type projection: we said that from is not simply an array, but

a restricted (projected) one: we can only call those methods that return the type parameter T , in

this case it means that we can only call get() . This is our approach to use-site variance, and

corresponds to Java's Array<? extends Object> , but in a slightly simpler way.

You can project a type with in as well:

fun fill(dest: Array<in String>, value: String) { ... }

Array<in String> corresponds to Java's Array<? super String> , i.e. you can pass an

array of CharSequence or an array of Object to the fill() function.

Sometimes you want to say that you know nothing about the type argument, but still want to use
it in a safe way. The safe way here is to de ne such a projection of the generic type, that every
concrete instantiation of that generic type would be a subtype of that projection.

Kotlin provides so called star-projection syntax for this:

For Foo<out T : TUpper> , where T is a covariant type parameter with the upper bound

TUpper , Foo<*> is equivalent to Foo<out TUpper> . It means that when the T is

unknown you can safely read values of TUpper from Foo<*> .

For Foo<in T> , where T is a contravariant type parameter, Foo<*> is equivalent to

Foo<in Nothing> . It means there is nothing you can write to Foo<*> in a safe way when

T is unknown.

For Foo<T : TUpper> , where T is an invariant type parameter with the upper bound

TUpper , Foo<*> is equivalent to Foo<out TUpper> for reading values and to Foo<in

Nothing> for writing values.

If a generic type has several type parameters each of them can be projected independently. For
example, if the type is declared as interface Function<in T, out U> we can imagine the

following star-projections:

Function<*, String> means Function<in Nothing, String> ;

Star-projections

—

—

—

—

127

Function<Int, *> means Function<Int, out Any?> ;

Function<*, *> means Function<in Nothing, out Any?> .

Note: star-projections are very much like Java's raw types, but safe.

Not only classes can have type parameters. Functions can, too. Type parameters are placed
before the name of the function:

fun <T> singletonList(item: T): List<T> {
 // ...
}

fun <T> T.basicToString(): String { // extension function
 // ...
}

To call a generic function, specify the type arguments at the call site after the name of the
function:

val l = singletonList<Int>(1)

Type arguments can be omitted if they can be inferred from the context, so the following
example works as well:

val l = singletonList(1)

The set of all possible types that can be substituted for a given type parameter may be restricted
by generic constraints.

The most common type of constraint is an upper bound that corresponds to Java's extends
keyword:

fun <T : Comparable<T>> sort(list: List<T>) { ... }

The type speci ed after a colon is the upper bound: only a subtype of Comparable<T> may be

substituted for T . For example:

sort(listOf(1, 2, 3)) // OK. Int is a subtype of Comparable<Int>
sort(listOf(HashMap<Int, String>())) // Error: HashMap<Int, String> is not a subtype of
Comparable<HashMap<Int, String>>

The default upper bound (if none speci ed) is Any? . Only one upper bound can be speci ed

inside the angle brackets. If the same type parameter needs more than one upper bound, we
need a separate where-clause:

—

—

Generic functions

Generic constraints

Upper bounds

128

fun <T> copyWhenGreater(list: List<T>, threshold: T): List<String>
 where T : CharSequence,
 T : Comparable<T> {
 return list.filter { it > threshold }.map { it.toString() }
}

The passed type must satisfy all conditions of the where clause simultaneously. In the above

example, the T type must implement both CharSequence and Comparable .

The type safety checks that Kotlin performs for generic declaration usages are only done at
compile time. At runtime, the instances of generic types do not hold any information about their
actual type arguments. The type information is said to be erased. For example, the instances of
Foo<Bar> and Foo<Baz?> are erased to just Foo<*> .

Therefore, there is no general way to check whether an instance of a generic type was created
with certain type arguments at runtime, and the compiler prohibits such is-checks.

Type casts to generic types with concrete type arguments, e.g. foo as List<String> , cannot

be checked at runtime.
These unchecked casts can be used when type safety is implied by the high-level program logic
but cannot be inferred directly by the compiler. The compiler issues a warning on unchecked
casts, and at runtime, only the non-generic part is checked (equivalent to foo as List<*>).

The type arguments of generic function calls are also only checked at compile time. Inside the
function bodies, the type parameters cannot be used for type checks, and type casts to type
parameters (foo as T) are unchecked. However, rei ed type parameters of inline functions

are substituted by the actual type arguments in the inlined function body at the call sites and thus
can be used for type checks and casts, with the same restrictions for instances of generic types as
described above.

Type erasure

129

Classes can be nested in other classes:

class Outer {
 private val bar: Int = 1
 class Nested {
 fun foo() = 2
 }
}

val demo = Outer.Nested().foo() // == 2

A class may be marked as inner to be able to access members of outer class. Inner classes carry

a reference to an object of an outer class:

class Outer {
 private val bar: Int = 1
 inner class Inner {
 fun foo() = bar
 }
}

val demo = Outer().Inner().foo() // == 1

See Quali ed this expressions to learn about disambiguation of this in inner classes.

Anonymous inner class instances are created using an object expression:

window.addMouseListener(object : MouseAdapter() {

 override fun mouseClicked(e: MouseEvent) { ... }

 override fun mouseEntered(e: MouseEvent) { ... }
})

Note: on the JVM, if the object is an instance of a functional Java interface (i.e. a Java interface with
a single abstract method), you can create it using a lambda expression pre xed with the type of
the interface:

val listener = ActionListener { println("clicked") }

Nested and Inner Classes

Inner classes

Anonymous inner classes

130

The most basic usage of enum classes is implementing type-safe enums:

enum class Direction {
 NORTH, SOUTH, WEST, EAST
}

Each enum constant is an object. Enum constants are separated with commas.

Since each enum is an instance of the enum class, they can be initialized as:

enum class Color(val rgb: Int) {
 RED(0xFF0000),
 GREEN(0x00FF00),
 BLUE(0x0000FF)
}

Enum constants can also declare their own anonymous classes with their corresponding
methods, as well as overriding base methods.

enum class ProtocolState {
 WAITING {
 override fun signal() = TALKING
 },

 TALKING {
 override fun signal() = WAITING
 };

 abstract fun signal(): ProtocolState
}

If the enum class de nes any members, separate the enum constant de nitions from the
member de nitions with a semicolon.

Enum entries cannot contain nested types other than inner classes (deprecated in Kotlin 1.2).

An enum class may implement an interface (but not derive from a class), providing either a single
interface members implementation for all of the entries, or separate ones for each entry within
its anonymous class. This is done by adding the interfaces to the enum class declaration as
follows:

Enum Classes

Initialization

Anonymous Classes

Implementing Interfaces in Enum Classes

131

enum class IntArithmetics : BinaryOperator<Int>, IntBinaryOperator {
 PLUS {
 override fun apply(t: Int, u: Int): Int = t + u
 },
 TIMES {
 override fun apply(t: Int, u: Int): Int = t * u
 };

 override fun applyAsInt(t: Int, u: Int) = apply(t, u)
}

Enum classes in Kotlin have synthetic methods allowing to list the de ned enum constants and to
get an enum constant by its name. The signatures of these methods are as follows (assuming the
name of the enum class is EnumClass):

EnumClass.valueOf(value: String): EnumClass
EnumClass.values(): Array<EnumClass>

The valueOf() method throws an IllegalArgumentException if the speci ed name does

not match any of the enum constants de ned in the class.

Since Kotlin 1.1, it's possible to access the constants in an enum class in a generic way, using the
enumValues<T>() and enumValueOf<T>() functions:

enum class RGB { RED, GREEN, BLUE }

inline fun <reified T : Enum<T>> printAllValues() {
 print(enumValues<T>().joinToString { it.name })
}

printAllValues<RGB>() // prints RED, GREEN, BLUE

Every enum constant has properties to obtain its name and position in the enum class
declaration:

val name: String
val ordinal: Int

The enum constants also implement the Comparable interface, with the natural order being the
order in which they are de ned in the enum class.

Working with Enum Constants

132

Sometimes we need to create an object of a slight modi cation of some class, without explicitly
declaring a new subclass for it. Kotlin handles this case with object expressions and object
declarations.

To create an object of an anonymous class that inherits from some type (or types), we write:

window.addMouseListener(object : MouseAdapter() {
 override fun mouseClicked(e: MouseEvent) { /*...*/ }

 override fun mouseEntered(e: MouseEvent) { /*...*/ }
})

If a supertype has a constructor, appropriate constructor parameters must be passed to it. Many
supertypes may be speci ed as a comma-separated list after the colon:

open class A(x: Int) {
 public open val y: Int = x
}

interface B { /*...*/ }

val ab: A = object : A(1), B {
 override val y = 15
}

If, by any chance, we need "just an object", with no nontrivial supertypes, we can simply say:

fun foo() {
 val adHoc = object {
 var x: Int = 0
 var y: Int = 0
 }
 print(adHoc.x + adHoc.y)
}

Note that anonymous objects can be used as types only in local and private declarations. If you
use an anonymous object as a return type of a public function or the type of a public property,
the actual type of that function or property will be the declared supertype of the anonymous
object, or Any if you didn't declare any supertype. Members added in the anonymous object will

not be accessible.

Object Expressions and Declarations

Object expressions

133

class C {
 // Private function, so the return type is the anonymous object type
 private fun foo() = object {
 val x: String = "x"
 }

 // Public function, so the return type is Any
 fun publicFoo() = object {
 val x: String = "x"
 }

 fun bar() {
 val x1 = foo().x // Works
 val x2 = publicFoo().x // ERROR: Unresolved reference 'x'
 }
}

The code in object expressions can access variables from the enclosing scope.

fun countClicks(window: JComponent) {
 var clickCount = 0
 var enterCount = 0

 window.addMouseListener(object : MouseAdapter() {
 override fun mouseClicked(e: MouseEvent) {
 clickCount++
 }

 override fun mouseEntered(e: MouseEvent) {
 enterCount++
 }
 })
 // ...
}

Singleton may be useful in several cases, and Kotlin (after Scala) makes it easy to declare
singletons:

object DataProviderManager {
 fun registerDataProvider(provider: DataProvider) {
 // ...
 }

 val allDataProviders: Collection<DataProvider>
 get() = // ...
}

This is called an object declaration, and it always has a name following the object keyword. Just

like a variable declaration, an object declaration is not an expression, and cannot be used on the
right hand side of an assignment statement.

Object declaration's initialization is thread-safe.

To refer to the object, we use its name directly:

Object declarations

134

http://en.wikipedia.org/wiki/Singleton_pattern

DataProviderManager.registerDataProvider(...)

Such objects can have supertypes:

object DefaultListener : MouseAdapter() {
 override fun mouseClicked(e: MouseEvent) { ... }

 override fun mouseEntered(e: MouseEvent) { ... }
}

NOTE: object declarations can't be local (i.e. be nested directly inside a function), but they can be
nested into other object declarations or non-inner classes.

An object declaration inside a class can be marked with the companion keyword:

class MyClass {
 companion object Factory {
 fun create(): MyClass = MyClass()
 }
}

Members of the companion object can be called by using simply the class name as the quali er:

val instance = MyClass.create()

The name of the companion object can be omitted, in which case the name Companion will be

used:

class MyClass {
 companion object { }
}

val x = MyClass.Companion

The name of a class used by itself (not as a quali er to another name) acts as a reference to the
companion object of the class (whether named or not):

class MyClass1 {
 companion object Named { }
}

val x = MyClass1

class MyClass2 {
 companion object { }
}

val y = MyClass2

Companion Objects

135

Note that, even though the members of companion objects look like static members in other
languages, at runtime those are still instance members of real objects, and can, for example,
implement interfaces:

interface Factory<T> {
 fun create(): T
}

class MyClass {
 companion object : Factory<MyClass> {
 override fun create(): MyClass = MyClass()
 }
}

val f: Factory<MyClass> = MyClass

However, on the JVM you can have members of companion objects generated as real static
methods and elds, if you use the @JvmStatic annotation. See the Java interoperability section

for more details.

There is one important semantic di erence between object expressions and object declarations:

object expressions are executed (and initialized) immediately, where they are used;

object declarations are initialized lazily, when accessed for the rst time;

a companion object is initialized when the corresponding class is loaded (resolved), matching
the semantics of a Java static initializer.

Semantic di erence between object expressions and declarations

—

—

—

136

Type aliases provide alternative names for existing types. If the type name is too long you can
introduce a di erent shorter name and use the new one instead.

It's useful to shorten long generic types. For instance, it's often tempting to shrink collection
types:

typealias NodeSet = Set<Network.Node>

typealias FileTable<K> = MutableMap<K, MutableList<File>>

You can provide di erent aliases for function types:

typealias MyHandler = (Int, String, Any) -> Unit

typealias Predicate<T> = (T) -> Boolean

You can have new names for inner and nested classes:

class A {
 inner class Inner
}
class B {
 inner class Inner
}

typealias AInner = A.Inner
typealias BInner = B.Inner

Type aliases do not introduce new types. They are equivalent to the corresponding underlying
types. When you add typealias Predicate<T> and use Predicate<Int> in your code, the

Kotlin compiler always expands it to (Int) -> Boolean . Thus you can pass a variable of your

type whenever a general function type is required and vice versa:

typealias Predicate<T> = (T) -> Boolean

fun foo(p: Predicate<Int>) = p(42)

fun main() {
 val f: (Int) -> Boolean = { it > 0 }
 println(foo(f)) // prints "true"

 val p: Predicate<Int> = { it > 0 }
 println(listOf(1, -2).filter(p)) // prints "[1]"
}

Type aliases

137

Inline classes are available only since Kotlin 1.3 and currently are experimental. See
details below

Sometimes it is necessary for business logic to create a wrapper around some type. However, it
introduces runtime overhead due to additional heap allocations. Moreover, if the wrapped type
is primitive, the performance hit is terrible, because primitive types are usually heavily optimized
by the runtime, while their wrappers don't get any special treatment.

To solve such issues, Kotlin introduces a special kind of class called an inline class , which is

declared by placing an inline modi er before the name of the class:

inline class Password(val value: String)

An inline class must have a single property initialized in the primary constructor. At runtime,
instances of the inline class will be represented using this single property (see details about
runtime representation below):

// No actual instantiation of class 'Password' happens
// At runtime 'securePassword' contains just 'String'
val securePassword = Password("Don't try this in production")

This is the main feature of inline classes, which inspired the name "inline": data of the class is
"inlined" into its usages (similar to how content of inline functions is inlined to call sites).

Inline classes support some functionality of regular classes. In particular, they are allowed to
declare properties and functions:

inline class Name(val s: String) {
 val length: Int
 get() = s.length

 fun greet() {
 println("Hello, $s")
 }
}

fun main() {
 val name = Name("Kotlin")
 name.greet() // method `greet` is called as a static method
 println(name.length) // property getter is called as a static method
}

However, there are some restrictions for inline class members:

inline classes cannot have init blocks

inline class properties cannot have backing elds

Inline classes

Members

—

—

138

it follows that inline classes can only have simple computable properties (no
lateinit/delegated properties)

Inline classes are allowed to inherit from interfaces:

interface Printable {
 fun prettyPrint(): String
}

inline class Name(val s: String) : Printable {
 override fun prettyPrint(): String = "Let's $s!"
}

fun main() {
 val name = Name("Kotlin")
 println(name.prettyPrint()) // Still called as a static method
}

It is forbidden for inline classes to participate in a class hierarchy. This means that inline classes
cannot extend other classes and must be final.

In generated code, the Kotlin compiler keeps a wrapper for each inline class. Inline class instances
can be represented at runtime either as wrappers or as the underlying type. This is similar to
how Int can be represented either as a primitive int or as the wrapper Integer .

The Kotlin compiler will prefer using underlying types instead of wrappers to produce the most
performant and optimized code. However, sometimes it is necessary to keep wrappers around.
As a rule of thumb, inline classes are boxed whenever they are used as another type.

—

Inheritance

Representation

139

interface I

inline class Foo(val i: Int) : I

fun asInline(f: Foo) {}
fun <T> asGeneric(x: T) {}
fun asInterface(i: I) {}
fun asNullable(i: Foo?) {}

fun <T> id(x: T): T = x

fun main() {
 val f = Foo(42)

 asInline(f) // unboxed: used as Foo itself
 asGeneric(f) // boxed: used as generic type T
 asInterface(f) // boxed: used as type I
 asNullable(f) // boxed: used as Foo?, which is different from Foo

 // below, 'f' first is boxed (while being passed to 'id') and then unboxed (when
returned from 'id')
 // In the end, 'c' contains unboxed representation (just '42'), as 'f'
 val c = id(f)
}

Because inline classes may be represented both as the underlying value and as a wrapper,
referential equality is pointless for them and is therefore prohibited.

Since inline classes are compiled to their underlying type, it may lead to various obscure errors,
for example unexpected platform signature clashes:

inline class UInt(val x: Int)

// Represented as 'public final void compute(int x)' on the JVM
fun compute(x: Int) { }

// Also represented as 'public final void compute(int x)' on the JVM!
fun compute(x: UInt) { }

To mitigate such issues, functions using inline classes are mangled by adding some stable
hashcode to the function name. Therefore, fun compute(x: UInt) will be represented as

public final void compute-<hashcode>(int x) , which solves the clash problem.

Note that - is an invalid symbol in Java, meaning that it's impossible to call functions

which accept inline classes from Java.

At rst sight, inline classes may appear to be very similar to type aliases. Indeed, both seem to
introduce a new type and both will be represented as the underlying type at runtime.

Mangling

Inline classes vs type aliases

140

However, the crucial di erence is that type aliases are assignment-compatible with their
underlying type (and with other type aliases with the same underlying type), while inline classes
are not.

In other words, inline classes introduce a truly new type, contrary to type aliases which only
introduce an alternative name (alias) for an existing type:

typealias NameTypeAlias = String
inline class NameInlineClass(val s: String)

fun acceptString(s: String) {}
fun acceptNameTypeAlias(n: NameTypeAlias) {}
fun acceptNameInlineClass(p: NameInlineClass) {}

fun main() {
 val nameAlias: NameTypeAlias = ""
 val nameInlineClass: NameInlineClass = NameInlineClass("")
 val string: String = ""

 acceptString(nameAlias) // OK: pass alias instead of underlying type
 acceptString(nameInlineClass) // Not OK: can't pass inline class instead of
underlying type

 // And vice versa:
 acceptNameTypeAlias(string) // OK: pass underlying type instead of alias
 acceptNameInlineClass(string) // Not OK: can't pass underlying type instead of inline
class
}

The design of inline classes is experimental, meaning that this feature is moving fast and no
compatibility guarantees are given. When using inline classes in Kotlin 1.3+, a warning will be
reported, indicating that this feature is experimental.

To remove the warning you have to opt in to the usage of this experimental feature by passing
the compiler argument -Xinline-classes .

compileKotlin {
 kotlinOptions.freeCompilerArgs += ["Xinline-classes"]
}

See Compiler options in Gradle for details. For Multiplatform Projects settings, see building
Multiplatform Projects with Gradle section.

Experimental status of inline classes

Enabling inline classes in Gradle

Enabling inline classes in Maven

141

<configuration>
 <args>
 <arg>-Xinline-classes</arg>
 </args>
</configuration>

See Compiler options in Maven for details.

See this language proposal for inline classes for other technical details and discussion.

Further discussion

142

https://github.com/Kotlin/KEEP/blob/master/proposals/inline-classes.md

Delegated properties are described on a separate page: Delegated Properties.

The Delegation pattern has proven to be a good alternative to implementation inheritance, and
Kotlin supports it natively requiring zero boilerplate code. A class Derived can implement an

interface Base by delegating all of its public members to a speci ed object:

interface Base {
 fun print()
}

class BaseImpl(val x: Int) : Base {
 override fun print() { print(x) }
}

class Derived(b: Base) : Base by b

fun main() {
 val b = BaseImpl(10)
 Derived(b).print()
}

The by-clause in the supertype list for Derived indicates that b will be stored internally in

objects of Derived and the compiler will generate all the methods of Base that forward to b .

Overrides work as you might expect: the compiler will use your override implementations

instead of those in the delegate object. If we were to add override fun printMessage() {

print("abc") } to Derived , the program would print "abc" instead of "10" when

printMessage is called:

Delegation

Property Delegation

Implementation by Delegation

Overriding a member of an interface implemented by delegation

143

https://en.wikipedia.org/wiki/Delegation_pattern

interface Base {
 fun printMessage()
 fun printMessageLine()
}

class BaseImpl(val x: Int) : Base {
 override fun printMessage() { print(x) }
 override fun printMessageLine() { println(x) }
}

class Derived(b: Base) : Base by b {
 override fun printMessage() { print("abc") }
}

fun main() {
 val b = BaseImpl(10)
 Derived(b).printMessage()
 Derived(b).printMessageLine()
}

Note, however, that members overridden in this way do not get called from the members of the
delegate object, which can only access its own implementations of the interface members:

interface Base {
 val message: String
 fun print()
}

class BaseImpl(val x: Int) : Base {
 override val message = "BaseImpl: x = $x"
 override fun print() { println(message) }
}

class Derived(b: Base) : Base by b {
 // This property is not accessed from b's implementation of `print`
 override val message = "Message of Derived"
}

fun main() {
 val b = BaseImpl(10)
 val derived = Derived(b)
 derived.print()
 println(derived.message)
}

144

There are certain common kinds of properties, that, though we can implement them manually
every time we need them, would be very nice to implement once and for all, and put into a
library. Examples include:

lazy properties: the value gets computed only upon rst access;

observable properties: listeners get noti ed about changes to this property;

storing properties in a map, instead of a separate eld for each property.

To cover these (and other) cases, Kotlin supports delegated properties:

class Example {
 var p: String by Delegate()
}

The syntax is: val/var <property name>: <Type> by <expression> . The expression

after by is the delegate, because get() (and set()) corresponding to the property will be

delegated to its getValue() and setValue() methods. Property delegates don’t have to

implement any interface, but they have to provide a getValue() function (and setValue()

— for vars). For example:

import kotlin.reflect.KProperty

class Delegate {
 operator fun getValue(thisRef: Any?, property: KProperty<*>): String {
 return "$thisRef, thank you for delegating '${property.name}' to me!"
 }

 operator fun setValue(thisRef: Any?, property: KProperty<*>, value: String) {
 println("$value has been assigned to '${property.name}' in $thisRef.")
 }
}

When we read from p that delegates to an instance of Delegate , the getValue() function

from Delegate is called, so that its rst parameter is the object we read p from and the

second parameter holds a description of p itself (e.g. you can take its name). For example:

val e = Example()
println(e.p)

This prints:

Example@33a17727, thank you for delegating ‘p’ to me!

Similarly, when we assign to p , the setValue() function is called. The rst two parameters are

the same, and the third holds the value being assigned:

e.p = "NEW"

This prints

Delegated Properties

—

—

—

145

NEW has been assigned to ‘p’ in Example@33a17727.

The speci cation of the requirements to the delegated object can be found below.

Note that since Kotlin 1.1 you can declare a delegated property inside a function or code block, it
shouldn't necessarily be a member of a class. Below you can nd the example.

The Kotlin standard library provides factory methods for several useful kinds of delegates.

lazy() is a function that takes a lambda and returns an instance of Lazy<T> which can serve

as a delegate for implementing a lazy property: the rst call to get() executes the lambda

passed to lazy() and remembers the result, subsequent calls to get() simply return the

remembered result.

val lazyValue: String by lazy {
 println("computed!")
 "Hello"
}

fun main() {
 println(lazyValue)
 println(lazyValue)
}

By default, the evaluation of lazy properties is synchronized: the value is computed only in one
thread, and all threads will see the same value. If the synchronization of initialization delegate is
not required, so that multiple threads can execute it simultaneously, pass
LazyThreadSafetyMode.PUBLICATION as a parameter to the lazy() function. And if you're

sure that the initialization will always happen on the same thread as the one where you use the
property, you can use LazyThreadSafetyMode.NONE : it doesn't incur any thread-safety

guarantees and the related overhead.

Delegates.observable() takes two arguments: the initial value and a handler for

modi cations. The handler gets called every time we assign to the property (after the assignment
has been performed). It has three parameters: a property being assigned to, the old value and
the new one:

Standard Delegates

Lazy

Observable

146

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/lazy.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.properties/-delegates/observable.html

import kotlin.properties.Delegates

class User {
 var name: String by Delegates.observable("<no name>") {
 prop, old, new ->
 println("$old -> $new")
 }
}

fun main() {
 val user = User()
 user.name = "first"
 user.name = "second"
}

If you want to be able to intercept an assignment and "veto" it, use vetoable() instead of

observable() . The handler passed to the vetoable is called before the assignment of a new

property value has been performed.

One common use case is storing the values of properties in a map. This comes up often in
applications like parsing JSON or doing other “dynamic” things. In this case, you can use the map
instance itself as the delegate for a delegated property.

class User(val map: Map<String, Any?>) {
 val name: String by map
 val age: Int by map
}

In this example, the constructor takes a map:

val user = User(mapOf(
 "name" to "John Doe",
 "age" to 25
))

Delegated properties take values from this map (by the string keys –– names of properties):

println(user.name) // Prints "John Doe"
println(user.age) // Prints 25

This works also for var’s properties if you use a MutableMap instead of read-only Map :

class MutableUser(val map: MutableMap<String, Any?>) {
 var name: String by map
 var age: Int by map
}

You can declare local variables as delegated properties. For instance, you can make a local
variable lazy:

Storing Properties in a Map

Local Delegated Properties (since 1.1)

147

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.properties/-delegates/vetoable.html

fun example(computeFoo: () -> Foo) {
 val memoizedFoo by lazy(computeFoo)

 if (someCondition && memoizedFoo.isValid()) {
 memoizedFoo.doSomething()
 }
}

The memoizedFoo variable will be computed on the rst access only. If someCondition fails,

the variable won't be computed at all.

Here we summarize requirements to delegate objects.

For a read-only property (i.e. a val), a delegate has to provide a function named getValue that

takes the following parameters:

thisRef — must be the same or a supertype of the property owner (for extension properties

— the type being extended);

property — must be of type KProperty<*> or its supertype.

this function must return the same type as property (or its subtype).

For a mutable property (a var), a delegate has to additionally provide a function named

setValue that takes the following parameters:

thisRef — same as for getValue() ;

property — same as for getValue() ;

new value — must be of the same type as the property or its subtype.

getValue() and/or setValue() functions may be provided either as member functions of

the delegate class or extension functions. The latter is handy when you need to delegate
property to an object which doesn't originally provide these functions. Both of the functions need
to be marked with the operator keyword.

The delegate class may implement one of the interfaces ReadOnlyProperty and

ReadWriteProperty containing the required operator methods. These interfaces are

declared in the Kotlin standard library:

interface ReadOnlyProperty<in R, out T> {
 operator fun getValue(thisRef: R, property: KProperty<*>): T
}

interface ReadWriteProperty<in R, T> {
 operator fun getValue(thisRef: R, property: KProperty<*>): T
 operator fun setValue(thisRef: R, property: KProperty<*>, value: T)
}

Property Delegate Requirements

—

—

—

—

—

148

Under the hood for every delegated property the Kotlin compiler generates an auxiliary property
and delegates to it. For instance, for the property prop the hidden property prop$delegate is

generated, and the code of the accessors simply delegates to this additional property:

class C {
 var prop: Type by MyDelegate()
}

// this code is generated by the compiler instead:
class C {
 private val prop$delegate = MyDelegate()
 var prop: Type
 get() = prop$delegate.getValue(this, this::prop)
 set(value: Type) = prop$delegate.setValue(this, this::prop, value)
}

The Kotlin compiler provides all the necessary information about prop in the arguments: the

rst argument this refers to an instance of the outer class C and this::prop is a re ection

object of the KProperty type describing prop itself.

Note that the syntax this::prop to refer a bound callable reference in the code directly is

available only since Kotlin 1.1.

By de ning the provideDelegate operator you can extend the logic of creating the object to

which the property implementation is delegated. If the object used on the right hand side of by

de nes provideDelegate as a member or extension function, that function will be called to

create the property delegate instance.

One of the possible use cases of provideDelegate is to check property consistency when the

property is created, not only in its getter or setter.

For example, if you want to check the property name before binding, you can write something
like this:

Translation Rules

Providing a delegate (since 1.1)

149

class ResourceDelegate<T> : ReadOnlyProperty<MyUI, T> {
 override fun getValue(thisRef: MyUI, property: KProperty<*>): T { ... }
}

class ResourceLoader<T>(id: ResourceID<T>) {
 operator fun provideDelegate(
 thisRef: MyUI,
 prop: KProperty<*>
): ReadOnlyProperty<MyUI, T> {
 checkProperty(thisRef, prop.name)
 // create delegate
 return ResourceDelegate()
 }

 private fun checkProperty(thisRef: MyUI, name: String) { ... }
}

class MyUI {
 fun <T> bindResource(id: ResourceID<T>): ResourceLoader<T> { ... }

 val image by bindResource(ResourceID.image_id)
 val text by bindResource(ResourceID.text_id)
}

The parameters of provideDelegate are the same as for getValue :

thisRef — must be the same or a supertype of the property owner (for extension properties

— the type being extended);

property — must be of type KProperty<*> or its supertype.

The provideDelegate method is called for each property during the creation of the MyUI

instance, and it performs the necessary validation right away.

Without this ability to intercept the binding between the property and its delegate, to achieve the
same functionality you'd have to pass the property name explicitly, which isn't very convenient:

// Checking the property name without "provideDelegate" functionality
class MyUI {
 val image by bindResource(ResourceID.image_id, "image")
 val text by bindResource(ResourceID.text_id, "text")
}

fun <T> MyUI.bindResource(
 id: ResourceID<T>,
 propertyName: String
): ReadOnlyProperty<MyUI, T> {
 checkProperty(this, propertyName)
 // create delegate
}

In the generated code, the provideDelegate method is called to initialize the auxiliary

prop$delegate property. Compare the generated code for the property declaration val

prop: Type by MyDelegate() with the generated code above (when the

provideDelegate method is not present):

—

—

150

class C {
 var prop: Type by MyDelegate()
}

// this code is generated by the compiler
// when the 'provideDelegate' function is available:
class C {
 // calling "provideDelegate" to create the additional "delegate" property
 private val prop$delegate = MyDelegate().provideDelegate(this, this::prop)
 var prop: Type
 get() = prop$delegate.getValue(this, this::prop)
 set(value: Type) = prop$delegate.setValue(this, this::prop, value)
}

Note that the provideDelegate method a ects only the creation of the auxiliary property and

doesn't a ect the code generated for getter or setter.

151

Functions and Lambdas

Functions in Kotlin are declared using the fun keyword:

fun double(x: Int): Int {
 return 2 * x
}

Calling functions uses the traditional approach:

val result = double(2)

Calling member functions uses the dot notation:

Stream().read() // create instance of class Stream and call read()

Function parameters are de ned using Pascal notation, i.e. name: type. Parameters are separated
using commas. Each parameter must be explicitly typed:

fun powerOf(number: Int, exponent: Int) { /*...*/ }

Function parameters can have default values, which are used when a corresponding argument is
omitted. This allows for a reduced number of overloads compared to other languages:

fun read(b: Array<Byte>, off: Int = 0, len: Int = b.size) { /*...*/ }

Default values are de ned using the = after type along with the value.

Overriding methods always use the same default parameter values as the base method. When
overriding a method with default parameter values, the default parameter values must be
omitted from the signature:

Functions

Function declarations

Function usage

Parameters

Default arguments

152

open class A {
 open fun foo(i: Int = 10) { /*...*/ }
}

class B : A() {
 override fun foo(i: Int) { /*...*/ } // no default value allowed
}

If a default parameter precedes a parameter with no default value, the default value can only be
used by calling the function with named arguments:

fun foo(bar: Int = 0, baz: Int) { /*...*/ }

foo(baz = 1) // The default value bar = 0 is used

If the last argument after default parameters is a lambda, it can be passed in either as a named
argument or outside the parentheses:

fun foo(bar: Int = 0, baz: Int = 1, qux: () -> Unit) { /*...*/ }

foo(1) { println("hello") } // Uses the default value baz = 1
foo(qux = { println("hello") }) // Uses both default values bar = 0 and baz = 1
foo { println("hello") } // Uses both default values bar = 0 and baz = 1

Function parameters can be named when calling functions. This is very convenient when a
function has a high number of parameters or default ones.

Given the following function:

fun reformat(str: String,
 normalizeCase: Boolean = true,
 upperCaseFirstLetter: Boolean = true,
 divideByCamelHumps: Boolean = false,
 wordSeparator: Char = ' ') {
/*...*/
}

We could call this using default arguments:

reformat(str)

However, when calling it with non-default, the call would look something like:

reformat(str, true, true, false, '_')

With named arguments we can make the code much more readable:

Named arguments

153

reformat(str,
 normalizeCase = true,
 upperCaseFirstLetter = true,
 divideByCamelHumps = false,
 wordSeparator = '_'
)

and if we do not need all arguments:

reformat(str, wordSeparator = '_')

When a function is called with both positional and named arguments, all the positional
arguments should be placed before the rst named one. For example, the call f(1, y = 2) is

allowed, but f(x = 1, 2) is not.

Variable number of arguments (vararg) can be passed in the named form by using the spread
operator:

fun foo(vararg strings: String) { /*...*/ }

foo(strings = *arrayOf("a", "b", "c"))

On the JVM: the named argument syntax cannot be used when calling Java functions
because Java bytecode does not always preserve names of function parameters.

If a function does not return any useful value, its return type is Unit . Unit is a type with only

one value - Unit . This value does not have to be returned explicitly:

fun printHello(name: String?): Unit {
 if (name != null)
 println("Hello ${name}")
 else
 println("Hi there!")
 // `return Unit` or `return` is optional
}

The Unit return type declaration is also optional. The above code is equivalent to:

fun printHello(name: String?) { ... }

When a function returns a single expression, the curly braces can be omitted and the body is
speci ed after a = symbol:

fun double(x: Int): Int = x * 2

Explicitly declaring the return type is optional when this can be inferred by the compiler:

Unit-returning functions

Single-expression functions

154

fun double(x: Int) = x * 2

Functions with block body must always specify return types explicitly, unless it's intended for
them to return Unit , in which case it is optional. Kotlin does not infer return types for functions

with block bodies because such functions may have complex control ow in the body, and the
return type will be non-obvious to the reader (and sometimes even for the compiler).

A parameter of a function (normally the last one) may be marked with vararg modi er:

fun <T> asList(vararg ts: T): List<T> {
 val result = ArrayList<T>()
 for (t in ts) // ts is an Array
 result.add(t)
 return result
}

allowing a variable number of arguments to be passed to the function:

val list = asList(1, 2, 3)

Inside a function a vararg -parameter of type T is visible as an array of T , i.e. the ts variable

in the example above has type Array<out T> .

Only one parameter may be marked as vararg . If a vararg parameter is not the last one in

the list, values for the following parameters can be passed using the named argument syntax, or,
if the parameter has a function type, by passing a lambda outside parentheses.

When we call a vararg -function, we can pass arguments one-by-one, e.g. asList(1, 2, 3) ,

or, if we already have an array and want to pass its contents to the function, we use the spread
operator (pre x the array with *):

val a = arrayOf(1, 2, 3)
val list = asList(-1, 0, *a, 4)

Functions marked with the infix keyword can also be called using the in x notation (omitting

the dot and the parentheses for the call). In x functions must satisfy the following requirements:

They must be member functions or extension functions;

They must have a single parameter;

The parameter must not accept variable number of arguments and must have no default
value.

Explicit return types

Variable number of arguments (Varargs)

In x notation

—

—

—

155

infix fun Int.shl(x: Int): Int { ... }

// calling the function using the infix notation
1 shl 2

// is the same as
1.shl(2)

In x function calls have lower precedence than the arithmetic operators, type casts, and
the rangeTo operator. The following expressions are equivalent:

1 shl 2 + 3 and 1 shl (2 + 3)

0 until n * 2 and 0 until (n * 2)

xs union ys as Set<*> and xs union (ys as Set<*>)

On the other hand, in x function call's precedence is higher than that of the boolean
operators && and ||, is- and in-checks, and some other operators. These expressions

are equivalent as well:

a && b xor c and a && (b xor c)

a xor b in c and (a xor b) in c

See the Grammar reference for the complete operators precedence hierarchy.

Note that in x functions always require both the receiver and the parameter to be speci ed.
When you're calling a method on the current receiver using the in x notation, you need to use
this explicitly; unlike regular method calls, it cannot be omitted. This is required to ensure

unambiguous parsing.

class MyStringCollection {
 infix fun add(s: String) { /*...*/ }

 fun build() {
 this add "abc" // Correct
 add("abc") // Correct
 //add "abc" // Incorrect: the receiver must be specified
 }
}

In Kotlin functions can be declared at top level in a le, meaning you do not need to create a class
to hold a function, which you are required to do in languages such as Java, C# or Scala. In addition
to top level functions, Kotlin functions can also be declared local, as member functions and
extension functions.

—

—

—

—

—

Function scope

Local functions

156

Kotlin supports local functions, i.e. a function inside another function:

fun dfs(graph: Graph) {
 fun dfs(current: Vertex, visited: MutableSet<Vertex>) {
 if (!visited.add(current)) return
 for (v in current.neighbors)
 dfs(v, visited)
 }

 dfs(graph.vertices[0], HashSet())
}

Local function can access local variables of outer functions (i.e. the closure), so in the case above,
the visited can be a local variable:

fun dfs(graph: Graph) {
 val visited = HashSet<Vertex>()
 fun dfs(current: Vertex) {
 if (!visited.add(current)) return
 for (v in current.neighbors)
 dfs(v)
 }

 dfs(graph.vertices[0])
}

A member function is a function that is de ned inside a class or object:

class Sample() {
 fun foo() { print("Foo") }
}

Member functions are called with dot notation:

Sample().foo() // creates instance of class Sample and calls foo

For more information on classes and overriding members see Classes and Inheritance.

Functions can have generic parameters which are speci ed using angle brackets before the
function name:

fun <T> singletonList(item: T): List<T> { /*...*/ }

For more information on generic functions see Generics.

Inline functions are explained here.

Member functions

Generic functions

Inline functions

Extension functions

157

Extension functions are explained in their own section.

Higher-Order functions and Lambdas are explained in their own section.

Kotlin supports a style of functional programming known as tail recursion. This allows some
algorithms that would normally be written using loops to instead be written using a recursive
function, but without the risk of stack over ow. When a function is marked with the tailrec

modi er and meets the required form, the compiler optimises out the recursion, leaving behind
a fast and e cient loop based version instead:

val eps = 1E-10 // "good enough", could be 10^-15

tailrec fun findFixPoint(x: Double = 1.0): Double
 = if (Math.abs(x - Math.cos(x)) < eps) x else findFixPoint(Math.cos(x))

This code calculates the xpoint of cosine, which is a mathematical constant. It simply calls
Math.cos repeatedly starting at 1.0 until the result doesn't change any more, yielding a result of
0.7390851332151611 for the speci ed eps precision. The resulting code is equivalent to this

more traditional style:

val eps = 1E-10 // "good enough", could be 10^-15

private fun findFixPoint(): Double {
 var x = 1.0
 while (true) {
 val y = Math.cos(x)
 if (Math.abs(x - y) < eps) return x
 x = Math.cos(x)
 }
}

To be eligible for the tailrec modi er, a function must call itself as the last operation it

performs. You cannot use tail recursion when there is more code after the recursive call, and you
cannot use it within try/catch/ nally blocks. Currently, tail recursion is supported by Kotlin for JVM
and Kotlin/Native.

Higher-order functions and lambdas

Tail recursive functions

158

https://en.wikipedia.org/wiki/Tail_call

Kotlin functions are rst-class, which means that they can be stored in variables and data
structures, passed as arguments to and returned from other higher-order functions. You can
operate with functions in any way that is possible for other non-function values.

To facilitate this, Kotlin, as a statically typed programming language, uses a family of function
types to represent functions and provides a set of specialized language constructs, such as
lambda expressions.

A higher-order function is a function that takes functions as parameters, or returns a function.

A good example is the functional programming idiom fold for collections, which takes an initial

accumulator value and a combining function and builds its return value by consecutively
combining current accumulator value with each collection element, replacing the accumulator:

fun <T, R> Collection<T>.fold(
 initial: R,
 combine: (acc: R, nextElement: T) -> R
): R {
 var accumulator: R = initial
 for (element: T in this) {
 accumulator = combine(accumulator, element)
 }
 return accumulator
}

In the code above, the parameter combine has a function type (R, T) -> R , so it accepts a

function that takes two arguments of types R and T and returns a value of type R . It is invoked

inside the for-loop, and the return value is then assigned to accumulator .

To call fold , we need to pass it an instance of the function type as an argument, and lambda

expressions (described in more detail below) are widely used for this purpose at higher-order
function call sites:

Higher-Order Functions and Lambdas

Higher-Order Functions

159

https://en.wikipedia.org/wiki/First-class_function
https://en.wikipedia.org/wiki/Fold_(higher-order_function)

val items = listOf(1, 2, 3, 4, 5)

// Lambdas are code blocks enclosed in curly braces.
items.fold(0, {
 // When a lambda has parameters, they go first, followed by '->'
 acc: Int, i: Int ->
 print("acc = $acc, i = $i, ")
 val result = acc + i
 println("result = $result")
 // The last expression in a lambda is considered the return value:
 result
})

// Parameter types in a lambda are optional if they can be inferred:
val joinedToString = items.fold("Elements:", { acc, i -> acc + " " + i })

// Function references can also be used for higher-order function calls:
val product = items.fold(1, Int::times)

The following sections explain in more detail the concepts mentioned so far.

Kotlin uses a family of function types like (Int) -> String for declarations that deal with

functions: val onClick: () -> Unit =

These types have a special notation that corresponds to the signatures of the functions, i.e. their
parameters and return values:

All function types have a parenthesized parameter types list and a return type: (A, B) -> C

denotes a type that represents functions taking two arguments of types A and B and

returning a value of type C . The parameter types list may be empty, as in () -> A . The

Unit return type cannot be omitted.

Function types can optionally have an additional receiver type, which is speci ed before a dot
in the notation: the type A.(B) -> C represents functions that can be called on a receiver

object of A with a parameter of B and return a value of C . Function literals with receiver are

often used along with these types.

Suspending functions belong to function types of a special kind, which have a suspend

modi er in the notation, such as suspend () -> Unit or suspend A.(B) -> C .

The function type notation can optionally include names for the function parameters: (x: Int,

y: Int) -> Point . These names can be used for documenting the meaning of the

parameters.

Function types

—

—

—

160

To specify that a function type is nullable, use parentheses: ((Int, Int) -> Int)?.

Function types can be combined using parentheses: (Int) -> ((Int) -> Unit)

The arrow notation is right-associative, (Int) -> (Int) -> Unit is equivalent to the

previous example, but not to ((Int) -> (Int)) -> Unit.

You can also give a function type an alternative name by using a type alias:

typealias ClickHandler = (Button, ClickEvent) -> Unit

There are several ways to obtain an instance of a function type:

Using a code block within a function literal, in one of the forms:

a lambda expression: { a, b -> a + b } ,

an anonymous function: fun(s: String): Int { return s.toIntOrNull() ?: 0

}

Function literals with receiver can be used as values of function types with receiver.

Using a callable reference to an existing declaration:

a top-level, local, member, or extension function: ::isOdd , String::toInt ,

a top-level, member, or extension property: List<Int>::size ,

a constructor: ::Regex

These include bound callable references that point to a member of a particular instance:
foo::toString .

Using instances of a custom class that implements a function type as an interface:

class IntTransformer: (Int) -> Int {
 override operator fun invoke(x: Int): Int = TODO()
}

val intFunction: (Int) -> Int = IntTransformer()

The compiler can infer the function types for variables if there is enough information:

val a = { i: Int -> i + 1 } // The inferred type is (Int) -> Int

Non-literal values of function types with and without receiver are interchangeable, so that the
receiver can stand in for the rst parameter, and vice versa. For instance, a value of type (A, B)

-> C can be passed or assigned where a A.(B) -> C is expected and the other way around:

Instantiating a function type

—

—

—

—

—

—

—

—

161

val repeatFun: String.(Int) -> String = { times -> this.repeat(times) }
val twoParameters: (String, Int) -> String = repeatFun // OK

fun runTransformation(f: (String, Int) -> String): String {
 return f("hello", 3)
}
val result = runTransformation(repeatFun) // OK

Note that a function type with no receiver is inferred by default, even if a variable is
initialized with a reference to an extension function. To alter that, specify the variable type
explicitly.

A value of a function type can be invoked by using its invoke(...) operator: f.invoke(x) or

just f(x) .

If the value has a receiver type, the receiver object should be passed as the rst argument.
Another way to invoke a value of a function type with receiver is to prepend it with the receiver
object, as if the value were an extension function: 1.foo(2) ,

Example:

val stringPlus: (String, String) -> String = String::plus
val intPlus: Int.(Int) -> Int = Int::plus

println(stringPlus.invoke("<-", "->"))
println(stringPlus("Hello, ", "world!"))

println(intPlus.invoke(1, 1))
println(intPlus(1, 2))
println(2.intPlus(3)) // extension-like call

Sometimes it is bene cial to use inline functions, which provide exible control ow, for higher-
order functions.

Lambda expressions and anonymous functions are 'function literals', i.e. functions that are not
declared, but passed immediately as an expression. Consider the following example:

max(strings, { a, b -> a.length < b.length })

Function max is a higher-order function, it takes a function value as the second argument. This

second argument is an expression that is itself a function, i.e. a function literal, which is
equivalent to the following named function:

fun compare(a: String, b: String): Boolean = a.length < b.length

Invoking a function type instance

Inline functions

Lambda Expressions and Anonymous Functions

162

The full syntactic form of lambda expressions is as follows:

val sum: (Int, Int) -> Int = { x: Int, y: Int -> x + y }

A lambda expression is always surrounded by curly braces, parameter declarations in the full
syntactic form go inside curly braces and have optional type annotations, the body goes after an
-> sign. If the inferred return type of the lambda is not Unit , the last (or possibly single)

expression inside the lambda body is treated as the return value.

If we leave all the optional annotations out, what's left looks like this:

val sum = { x, y -> x + y }

In Kotlin, there is a convention: if the last parameter of a function is a function, then a lambda
expression passed as the corresponding argument can be placed outside the parentheses:

val product = items.fold(1) { acc, e -> acc * e }

Such syntax is also known as trailing lambda.

If the lambda is the only argument to that call, the parentheses can be omitted entirely:

run { println("...") }

It's very common that a lambda expression has only one parameter.

If the compiler can gure the signature out itself, it is allowed not to declare the only parameter
and omit -> . The parameter will be implicitly declared under the name it :

ints.filter { it > 0 } // this literal is of type '(it: Int) -> Boolean'

We can explicitly return a value from the lambda using the quali ed return syntax. Otherwise, the
value of the last expression is implicitly returned.

Therefore, the two following snippets are equivalent:

Lambda expression syntax

Passing a lambda to the last parameter

it: implicit name of a single parameter

Returning a value from a lambda expression

163

ints.filter {
 val shouldFilter = it > 0
 shouldFilter
}

ints.filter {
 val shouldFilter = it > 0
 return@filter shouldFilter
}

This convention, along with passing a lambda expression outside parentheses, allows for LINQ-
style code:

strings.filter { it.length == 5 }.sortedBy { it }.map { it.toUpperCase() }

If the lambda parameter is unused, you can place an underscore instead of its name:

map.forEach { _, value -> println("$value!") }

Destructuring in lambdas is described as a part of destructuring declarations.

One thing missing from the lambda expression syntax presented above is the ability to specify
the return type of the function. In most cases, this is unnecessary because the return type can be
inferred automatically. However, if you do need to specify it explicitly, you can use an alternative
syntax: an anonymous function.

fun(x: Int, y: Int): Int = x + y

An anonymous function looks very much like a regular function declaration, except that its name
is omitted. Its body can be either an expression (as shown above) or a block:

fun(x: Int, y: Int): Int {
 return x + y
}

The parameters and the return type are speci ed in the same way as for regular functions,
except that the parameter types can be omitted if they can be inferred from context:

ints.filter(fun(item) = item > 0)

The return type inference for anonymous functions works just like for normal functions: the
return type is inferred automatically for anonymous functions with an expression body and has
to be speci ed explicitly (or is assumed to be Unit) for anonymous functions with a block body.

Underscore for unused variables (since 1.1)

Destructuring in lambdas (since 1.1)

Anonymous functions

164

http://msdn.microsoft.com/en-us/library/bb308959.aspx

Note that anonymous function parameters are always passed inside the parentheses. The
shorthand syntax allowing to leave the function outside the parentheses works only for lambda
expressions.

One other di erence between lambda expressions and anonymous functions is the behavior of
non-local returns. A return statement without a label always returns from the function declared

with the fun keyword. This means that a return inside a lambda expression will return from the

enclosing function, whereas a return inside an anonymous function will return from the

anonymous function itself.

A lambda expression or anonymous function (as well as a local function and an object
expression) can access its closure, i.e. the variables declared in the outer scope. The variables
captured in the closure can be modi ed in the lambda:

var sum = 0
ints.filter { it > 0 }.forEach {
 sum += it
}
print(sum)

Function types with receiver, such as A.(B) -> C , can be instantiated with a special form of

function literals – function literals with receiver.

As said above, Kotlin provides the ability to call an instance of a function type with receiver
providing the receiver object.

Inside the body of the function literal, the receiver object passed to a call becomes an implicit
this, so that you can access the members of that receiver object without any additional

quali ers, or access the receiver object using a this expression.

This behavior is similar to extension functions, which also allow you to access the members of
the receiver object inside the body of the function.

Here is an example of a function literal with receiver along with its type, where plus is called on

the receiver object:

val sum: Int.(Int) -> Int = { other -> plus(other) }

The anonymous function syntax allows you to specify the receiver type of a function literal
directly. This can be useful if you need to declare a variable of a function type with receiver, and
to use it later.

val sum = fun Int.(other: Int): Int = this + other

Closures

Function literals with receiver

165

Lambda expressions can be used as function literals with receiver when the receiver type can be
inferred from context. One of the most important examples of their usage is type-safe builders:

class HTML {
 fun body() { ... }
}

fun html(init: HTML.() -> Unit): HTML {
 val html = HTML() // create the receiver object
 html.init() // pass the receiver object to the lambda
 return html
}

html { // lambda with receiver begins here
 body() // calling a method on the receiver object
}

166

Using higher-order functions imposes certain runtime penalties: each function is an object, and it
captures a closure, i.e. those variables that are accessed in the body of the function. Memory
allocations (both for function objects and classes) and virtual calls introduce runtime overhead.

But it appears that in many cases this kind of overhead can be eliminated by inlining the lambda
expressions. The functions shown below are good examples of this situation. I.e., the lock()

function could be easily inlined at call-sites. Consider the following case:

lock(l) { foo() }

Instead of creating a function object for the parameter and generating a call, the compiler could
emit the following code:

l.lock()
try {
 foo()
}
finally {
 l.unlock()
}

Isn't it what we wanted from the very beginning?

To make the compiler do this, we need to mark the lock() function with the inline modi er:

inline fun <T> lock(lock: Lock, body: () -> T): T { ... }

The inline modi er a ects both the function itself and the lambdas passed to it: all of those

will be inlined into the call site.

Inlining may cause the generated code to grow; however, if we do it in a reasonable way (i.e.
avoiding inlining large functions), it will pay o in performance, especially at "megamorphic" call-
sites inside loops.

In case you want only some of the lambdas passed to an inline function to be inlined, you can
mark some of your function parameters with the noinline modi er:

inline fun foo(inlined: () -> Unit, noinline notInlined: () -> Unit) { ... }

Inlinable lambdas can only be called inside the inline functions or passed as inlinable arguments,
but noinline ones can be manipulated in any way we like: stored in elds, passed around etc.

Note that if an inline function has no inlinable function parameters and no rei ed type
parameters, the compiler will issue a warning, since inlining such functions is very unlikely to be
bene cial (you can suppress the warning if you are sure the inlining is needed using the
annotation @Suppress("NOTHING_TO_INLINE")).

Inline Functions

noinline

167

In Kotlin, we can only use a normal, unquali ed return to exit a named function or an

anonymous function. This means that to exit a lambda, we have to use a label, and a bare
return is forbidden inside a lambda, because a lambda cannot make the enclosing function

return:

fun foo() {
 ordinaryFunction {
 return // ERROR: cannot make `foo` return here
 }
}

But if the function the lambda is passed to is inlined, the return can be inlined as well, so it is
allowed:

inline fun inlined(block: () -> Unit) { println("hi!") }

fun foo() {
 inlined {
 return // OK: the lambda is inlined
 }
}

Such returns (located in a lambda, but exiting the enclosing function) are called non-local returns.
We are used to this sort of construct in loops, which inline functions often enclose:

fun hasZeros(ints: List<Int>): Boolean {
 ints.forEach {
 if (it == 0) return true // returns from hasZeros
 }
 return false
}

Note that some inline functions may call the lambdas passed to them as parameters not directly
from the function body, but from another execution context, such as a local object or a nested
function. In such cases, non-local control ow is also not allowed in the lambdas. To indicate that,
the lambda parameter needs to be marked with the crossinline modi er:

inline fun f(crossinline body: () -> Unit) {
 val f = object: Runnable {
 override fun run() = body()
 }
 // ...
}

break and continue are not yet available in inlined lambdas, but we are planning to

support them too.

Sometimes we need to access a type passed to us as a parameter:

Non-local returns

Rei ed type parameters

168

fun <T> TreeNode.findParentOfType(clazz: Class<T>): T? {
 var p = parent
 while (p != null && !clazz.isInstance(p)) {
 p = p.parent
 }
 @Suppress("UNCHECKED_CAST")
 return p as T?
}

Here, we walk up a tree and use re ection to check if a node has a certain type. It’s all ne, but
the call site is not very pretty:

treeNode.findParentOfType(MyTreeNode::class.java)

What we actually want is simply pass a type to this function, i.e. call it like this:

treeNode.findParentOfType<MyTreeNode>()

To enable this, inline functions support rei ed type parameters, so we can write something like
this:

inline fun <reified T> TreeNode.findParentOfType(): T? {
 var p = parent
 while (p != null && p !is T) {
 p = p.parent
 }
 return p as T?
}

We quali ed the type parameter with the reified modi er, now it’s accessible inside the

function, almost as if it were a normal class. Since the function is inlined, no re ection is needed,
normal operators like !is and as are working now. Also, we can call it as mentioned above:

myTree.findParentOfType<MyTreeNodeType>() .

Though re ection may not be needed in many cases, we can still use it with a rei ed type
parameter:

inline fun <reified T> membersOf() = T::class.members

fun main(s: Array<String>) {
 println(membersOf<StringBuilder>().joinToString("\n"))
}

Normal functions (not marked as inline) cannot have rei ed parameters. A type that does not
have a run-time representation (e.g. a non-rei ed type parameter or a ctitious type like
Nothing) cannot be used as an argument for a rei ed type parameter.

For a low-level description, see the spec document.

Inline properties (since 1.1)

169

https://github.com/JetBrains/kotlin/blob/master/spec-docs/reified-type-parameters.md

The inline modi er can be used on accessors of properties that don't have a backing eld. You

can annotate individual property accessors:

val foo: Foo
 inline get() = Foo()

var bar: Bar
 get() = ...
 inline set(v) { ... }

You can also annotate an entire property, which marks both of its accessors as inline:

inline var bar: Bar
 get() = ...
 set(v) { ... }

At the call site, inline accessors are inlined as regular inline functions.

When an inline function is public or protected and is not a part of a private or

internal declaration, it is considered a module's public API. It can be called in other modules

and is inlined at such call sites as well.

This imposes certain risks of binary incompatibility caused by changes in the module that
declares an inline function in case the calling module is not re-compiled after the change.

To eliminate the risk of such incompatibility being introduced by a change in non-public API of a
module, the public API inline functions are not allowed to use non-public-API declarations, i.e.
private and internal declarations and their parts, in their bodies.

An internal declaration can be annotated with @PublishedApi , which allows its use in

public API inline functions. When an internal inline function is marked as @PublishedApi ,

its body is checked too, as if it were public.

Restrictions for public API inline functions

170

Collections

The Kotlin Standard Library provides a comprehensive set of tools for managing collections –
groups of a variable number of items (possibly zero) that share signi cance to the problem being
solved and are operated upon commonly.

Collections are a common concept for most programming languages, so if you're familiar with,
for example, Java or Python collections, you can skip this introduction and proceed to the
detailed sections.

A collection usually contains a number of objects (this number may also be zero) of the same
type. Objects in a collection are called elements or items. For example, all the students in a
department form a collection that can be used to calculate their average age. The following
collection types are relevant for Kotlin:

List is an ordered collection with access to elements by indices – integer numbers that re ect
their position. Elements can occur more than once in a list. An example of a list is a sentence:
it's a group of words, their order is important, and they can repeat.

Set is a collection of unique elements. It re ects the mathematical abstraction of set: a group
of objects without repetitions. Generally, the order of set elements has no signi cance. For
example, an alphabet is a set of letters.

Map (or dictionary) is a set of key-value pairs. Keys are unique, and each of them maps to
exactly one value. The values can be duplicates. Maps are useful for storing logical
connections between objects, for example, an employee's ID and their position.

Kotlin lets you manipulate collections independently of the exact type of objects stored in them.
In other words, you add a String to a list of String s the same way as you would do with

Int s or a user-de ned class. So, the Kotlin Standard Library o ers generic interfaces, classes,

and functions for creating, populating, and managing collections of any type.

The collection interfaces and related functions are located in the kotlin.collections package. Let's
get an overview of its contents.

The Kotlin Standard Library provides implementations for basic collection types: sets, lists, and
maps. A pair of interfaces represent each collection type:

Kotlin Collections Overview

—

—

—

Collection types

171

A read-only interface that provides operations for accessing collection elements.

A mutable interface that extends the corresponding read-only interface with write operations:
adding, removing, and updating its elements.

Note that altering a mutable collection doesn't require it to be a var: write operations modify the

same mutable collection object, so the reference doesn't change. Although, if you try to reassign
a val collection, you'll get a compilation error.

val numbers = mutableListOf("one", "two", "three", "four")
numbers.add("five") // this is OK
//numbers = mutableListOf("six", "seven") // compilation error

The read-only collection types are covariant. This means that, if a Rectangle class inherits from

Shape , you can use a List<Rectangle> anywhere the List<Shape> is required. In other

words, the collection types have the same subtyping relationship as the element types. Maps are
covariant on the value type, but not on the key type.

In turn, mutable collections aren't covariant; otherwise, this would lead to runtime failures. If
MutableList<Rectangle> was a subtype of MutableList<Shape> , you could insert other

Shape inheritors (for example, Circle) into it, thus violating its Rectangle type argument.

Below is a diagram of the Kotlin collection interfaces:

Let's walk through the interfaces and their implementations.

Collection<T> is the root of the collection hierarchy. This interface represents the common

behavior of a read-only collection: retrieving size, checking item membership, and so on.
Collection inherits from the Iterable<T> interface that de nes the operations for iterating

elements. You can use Collection as a parameter of a function that applies to di erent

collection types. For more speci c cases, use the Collection 's inheritors: List and Set.

fun printAll(strings: Collection<String>) {
 for(s in strings) print("$s ")
 println()
 }

fun main() {
 val stringList = listOf("one", "two", "one")
 printAll(stringList)

 val stringSet = setOf("one", "two", "three")
 printAll(stringSet)
}

MutableCollection is a Collection with write operations, such as add and remove .

—

—

Collection

172

fun List<String>.getShortWordsTo(shortWords: MutableList<String>, maxLength: Int) {
 this.filterTo(shortWords) { it.length <= maxLength }
 // throwing away the articles
 val articles = setOf("a", "A", "an", "An", "the", "The")
 shortWords -= articles
}

fun main() {
 val words = "A long time ago in a galaxy far far away".split(" ")
 val shortWords = mutableListOf<String>()
 words.getShortWordsTo(shortWords, 3)
 println(shortWords)
}

List<T> stores elements in a speci ed order and provides indexed access to them. Indices start

from zero – the index of the rst element – and go to lastIndex which is the (list.size -

1) .

val numbers = listOf("one", "two", "three", "four")
println("Number of elements: ${numbers.size}")
println("Third element: ${numbers.get(2)}")
println("Fourth element: ${numbers[3]}")
println("Index of element \"two\" ${numbers.indexOf("two")}")

List elements (including nulls) can duplicate: a list can contain any number of equal objects or
occurrences of a single object. Two lists are considered equal if they have the same sizes and
structurally equal elements at the same positions.

val bob = Person("Bob", 31)
val people = listOf<Person>(Person("Adam", 20), bob, bob)
val people2 = listOf<Person>(Person("Adam", 20), Person("Bob", 31), bob)
println(people == people2)
bob.age = 32
println(people == people2)

MutableList is a List with list-speci c write operations, for example, to add or remove an

element at a speci c position.

val numbers = mutableListOf(1, 2, 3, 4)
numbers.add(5)
numbers.removeAt(1)
numbers[0] = 0
numbers.shuffle()
println(numbers)

As you see, in some aspects lists are very similar to arrays. However, there is one important
di erence: an array's size is de ned upon initialization and is never changed; in turn, a list
doesn't have a prede ned size; a list's size can be changed as a result of write operations: adding,
updating, or removing elements.

List

173

In Kotlin, the default implementation of List is ArrayList which you can think of as a

resizable array.

Set<T> stores unique elements; their order is generally unde ned. null elements are unique

as well: a Set can contain only one null . Two sets are equal if they have the same size, and for

each element of a set there is an equal element in the other set.

val numbers = setOf(1, 2, 3, 4)
println("Number of elements: ${numbers.size}")
if (numbers.contains(1)) println("1 is in the set")

val numbersBackwards = setOf(4, 3, 2, 1)
println("The sets are equal: ${numbers == numbersBackwards}")

MutableSet is a Set with write operations from MutableCollection .

The default implementation of Set – LinkedHashSet – preserves the order of elements

insertion. Hence, the functions that rely on the order, such as first() or last() , return

predictable results on such sets.

val numbers = setOf(1, 2, 3, 4) // LinkedHashSet is the default implementation
val numbersBackwards = setOf(4, 3, 2, 1)

println(numbers.first() == numbersBackwards.first())
println(numbers.first() == numbersBackwards.last())

An alternative implementation – HashSet – says nothing about the elements order, so calling

such functions on it returns unpredictable results. However, HashSet requires less memory to

store the same number of elements.

Map<K, V> is not an inheritor of the Collection interface; however, it's a Kotlin collection

type as well. A Map stores key-value pairs (or entries); keys are unique, but di erent keys can be

paired with equal values. The Map interface provides speci c functions, such as access to value

by key, searching keys and values, and so on.

val numbersMap = mapOf("key1" to 1, "key2" to 2, "key3" to 3, "key4" to 1)

println("All keys: ${numbersMap.keys}")
println("All values: ${numbersMap.values}")
if ("key2" in numbersMap) println("Value by key \"key2\": ${numbersMap["key2"]}")
if (1 in numbersMap.values) println("The value 1 is in the map")
if (numbersMap.containsValue(1)) println("The value 1 is in the map") // same as previous

Two maps containing the equal pairs are equal regardless of the pair order.

Set

Map

174

val numbersMap = mapOf("key1" to 1, "key2" to 2, "key3" to 3, "key4" to 1)
val anotherMap = mapOf("key2" to 2, "key1" to 1, "key4" to 1, "key3" to 3)

println("The maps are equal: ${numbersMap == anotherMap}")

MutableMap is a Map with map write operations, for example, you can add a new key-value pair

or update the value associated with the given key.

val numbersMap = mutableMapOf("one" to 1, "two" to 2)
numbersMap.put("three", 3)
numbersMap["one"] = 11

println(numbersMap)

The default implementation of Map – LinkedHashMap – preserves the order of elements

insertion when iterating the map. In turn, an alternative implementation – HashMap – says

nothing about the elements order.

175

The most common way to create a collection is with the standard library functions listOf<T>(),

setOf<T>(), mutableListOf<T>(), mutableSetOf<T>(). If you provide a comma-separated

list of collection elements as arguments, the compiler detects the element type automatically.
When creating empty collections, specify the type explicitly.

val numbersSet = setOf("one", "two", "three", "four")
val emptySet = mutableSetOf<String>()

The same is available for maps with the functions mapOf() and mutableMapOf(). The map's

keys and values are passed as Pair objects (usually created with to in x function).

val numbersMap = mapOf("key1" to 1, "key2" to 2, "key3" to 3, "key4" to 1)

Note that the to notation creates a short-living Pair object, so it's recommended that you use

it only if performance isn't critical. To avoid excessive memory usage, use alternative ways. For
example, you can create a mutable map and populate it using the write operations. The apply()

function can help to keep the initialization uent here.

val numbersMap = mutableMapOf<String, String>().apply { this["one"] = "1"; this["two"] =
"2" }

There are also functions for creating collections without any elements: emptyList(),

emptySet(), and emptyMap(). When creating empty collections, you should specify the type of

elements that the collection will hold.

val empty = emptyList<String>()

For lists, there is a constructor that takes the list size and the initializer function that de nes the
element value based on its index.

val doubled = List(3, { it * 2 }) // or MutableList if you want to change its content
later
println(doubled)

To create a concrete type collection, such as an ArrayList or LinkedList , you can use the

available constructors for these types. Similar constructors are available for implementations of
Set and Map .

Constructing Collections

Constructing from elements

Empty collections

Initializer functions for lists

Concrete type constructors

176

val linkedList = LinkedList<String>(listOf("one", "two", "three"))
val presizedSet = HashSet<Int>(32)

To create a collection with the same elements as an existing collection, you can use copying
operations. Collection copying operations from the standard library create shallow copy
collections with references to the same elements. Thus, a change made to a collection element
re ects in all its copies.

Collection copying functions, such as toList(), toMutableList(), toSet() and others,

create a snapshot of a collection at a speci c moment. Their result is a new collection of the same
elements. If you add or remove elements from the original collection, this won't a ect the copies.
Copies may be changed independently of the source as well.

val sourceList = mutableListOf(1, 2, 3)
val copyList = sourceList.toMutableList()
val readOnlyCopyList = sourceList.toList()
sourceList.add(4)
println("Copy size: ${copyList.size}")

//readOnlyCopyList.add(4) // compilation error
println("Read-only copy size: ${readOnlyCopyList.size}")

These functions can also be used for converting collections to other types, for example, build a
set from a list or vice versa.

val sourceList = mutableListOf(1, 2, 3)
val copySet = sourceList.toMutableSet()
copySet.add(3)
copySet.add(4)
println(copySet)

Alternatively, you can create new references to the same collection instance. New references are
created when you initialize a collection variable with an existing collection. So, when the
collection instance is altered through a reference, the changes are re ected in all its references.

val sourceList = mutableListOf(1, 2, 3)
val referenceList = sourceList
referenceList.add(4)
println("Source size: ${sourceList.size}")

Collection initialization can be used for restricting mutability. For example, if you create a List

reference to a MutableList , the compiler will produce errors if you try to modify the collection

through this reference.

val sourceList = mutableListOf(1, 2, 3)
val referenceList: List<Int> = sourceList
//referenceList.add(4) //compilation error
sourceList.add(4)
println(referenceList) // shows the current state of sourceList

Copying

177

Collections can be created in result of various operations on other collections. For example,
ltering a list creates a new list of elements that match the lter:

val numbers = listOf("one", "two", "three", "four")
val longerThan3 = numbers.filter { it.length > 3 }
println(longerThan3)

Mapping produces a list of a transformation results:

val numbers = setOf(1, 2, 3)
println(numbers.map { it * 3 })
println(numbers.mapIndexed { idx, value -> value * idx })

Association produces maps:

val numbers = listOf("one", "two", "three", "four")
println(numbers.associateWith { it.length })

For more information about operations on collections in Kotlin, see Collection Operations
Overview.

Invoking functions on other collections

178

For traversing collection elements, the Kotlin standard library supports the commonly used
mechanism of iterators – objects that provide access to the elements sequentially without
exposing the underlying structure of the collection. Iterators are useful when you need to
process all the elements of a collection one-by-one, for example, print values or make similar
updates to them.

Iterators can be obtained for inheritors of the Iterable<T> interface, including Set and

List , by calling the iterator() function. Once you obtain an iterator, it points to the rst

element of a collection; calling the next() function returns this element and moves the iterator

position to the following element if it exists. Once the iterator passes through the last element, it
can no longer be used for retrieving elements; neither can it be reset to any previous position. To
iterate through the collection again, create a new iterator.

val numbers = listOf("one", "two", "three", "four")
val numbersIterator = numbers.iterator()
while (numbersIterator.hasNext()) {
 println(numbersIterator.next())
}

Another way to go through an Iterable collection is the well-known for loop. When using

for on a collection, you obtain the iterator implicitly. So, the following code is equivalent to the

example above:

val numbers = listOf("one", "two", "three", "four")
for (item in numbers) {
 println(item)
}

Finally, there is a useful forEach() function that lets you automatically iterate a collection and

execute the given code for each element. So, the same example would look like this:

val numbers = listOf("one", "two", "three", "four")
numbers.forEach {
 println(it)
}

For lists, there is a special iterator implementation: ListIterator. It supports iterating lists in

both directions: forwards and backwards. Backward iteration is implemented by the functions
hasPrevious() and previous(). Additionally, the ListIterator provides information

about the element indices with the functions nextIndex() and previousIndex().

Iterators

List iterators

179

val numbers = listOf("one", "two", "three", "four")
val listIterator = numbers.listIterator()
while (listIterator.hasNext()) listIterator.next()
println("Iterating backwards:")
while (listIterator.hasPrevious()) {
 print("Index: ${listIterator.previousIndex()}")
 println(", value: ${listIterator.previous()}")
}

Having the ability to iterate in both directions, means the ListIterator can still be used after

it reaches the last element.

For iterating mutable collections, there is MutableIterator that extends Iterator with the

element removal function remove(). So, you can remove elements from a collection while

iterating it.

val numbers = mutableListOf("one", "two", "three", "four")
val mutableIterator = numbers.iterator()

mutableIterator.next()
mutableIterator.remove()
println("After removal: $numbers")

In addition to removing elements, the MutableListIterator can also insert and replace

elements while iterating the list.

val numbers = mutableListOf("one", "four", "four")
val mutableListIterator = numbers.listIterator()

mutableListIterator.next()
mutableListIterator.add("two")
mutableListIterator.next()
mutableListIterator.set("three")
println(numbers)

Mutable iterators

180

Kotlin lets you easily create ranges of values using the rangeTo() function from the

kotlin.ranges package and its operator form .. . Usually, rangeTo() is complemented by

in or !in functions.

if (i in 1..4) { // equivalent of 1 <= i && i <= 4
 print(i)
}

Integral type ranges (IntRange, LongRange, CharRange) have an extra feature: they can be

iterated over. These ranges are also progressions of the corresponding integral types. Such
ranges are generally used for iteration in the for loops.

for (i in 1..4) print(i)

To iterate numbers in reverse order, use the downTo function instead of .. .

for (i in 4 downTo 1) print(i)

It is also possible to iterate over numbers with an arbitrary step (not necessarily 1). This is done
via the step function.

for (i in 1..8 step 2) print(i)
println()
for (i in 8 downTo 1 step 2) print(i)

To iterate a number range which does not include its end element, use the until function:

for (i in 1 until 10) { // i in [1, 10), 10 is excluded
 print(i)
}

A range de nes a closed interval in the mathematical sense: it is de ned by its two endpoint
values which are both included in the range. Ranges are de ned for comparable types: having an
order, you can de ne whether an arbitrary instance is in the range between two given instances.
The main operation on ranges is contains , which is usually used in the form of in and !in

operators.

To create a range for your class, call the rangeTo() function on the range start value and

provide the end value as an argument. rangeTo() is often called in its operator form .. .

val versionRange = Version(1, 11)..Version(1, 30)
println(Version(0, 9) in versionRange)
println(Version(1, 20) in versionRange)

Ranges and Progressions

Range

Progression

181

https://en.wikipedia.org/wiki/Arithmetic_progression

As shown in the examples above, the ranges of integral types, such as Int , Long , and Char ,

can be treated as arithmetic progressions of them. In Kotlin, these progressions are de ned by
special types: IntProgression, LongProgression, and CharProgression.

Progressions have three essential properties: the first element, the last element, and a

non-zero step . The rst element is first , subsequent elements are the previous element

plus a step . The last element is always hit by iteration unless the progression is empty. Iteration

over a progression with a positive step is equivalent to an indexed for loop in Java/JavaScript.

for (int i = first; i <= last; i += step) {
 // ...
}

When you create a progression implicitly by iterating a range, this progression's first and

last elements are the range's endpoints, and the step is 1.

for (i in 1..10) print(i)

To de ne a custom progression step, use the step function on a range.

for (i in 1..8 step 2) print(i)

The last element of the progression is calculated to nd the maximum value not greater than the
end value for a positive step or the minimum value not less than the end value for a negative
step such that (last - first) % step == 0 .

To create a progression for iterating in reverse order, use downTo instead of .. when de ning

the range for it.

for (i in 4 downTo 1) print(i)

Progressions implement Iterable<N> , where N is Int , Long , or Char respectively, so you

can use them in various collection functions like map , filter , and other.

println((1..10).filter { it % 2 == 0 })

182

https://en.wikipedia.org/wiki/Arithmetic_progression

Along with collections, the Kotlin standard library contains another container type – sequences
(Sequence<T>). Sequences o er the same functions as Iterable but implement another

approach to multi-step collection processing.

When the processing of an Iterable includes multiple steps, they are executed eagerly: each

processing step completes and returns its result – an intermediate collection. The following step
executes on this collection. In turn, multi-step processing of sequences is executed lazily when
possible: actual computing happens only when the result of the whole processing chain is
requested.

The order of operations execution is di erent as well: Sequence performs all the processing

steps one-by-one for every single element. In turn, Iterable completes each step for the

whole collection and then proceeds to the next step.

So, the sequences let you avoid building results of intermediate steps, therefore improving the
performance of the whole collection processing chain. However, the lazy nature of sequences
adds some overhead which may be signi cant when processing smaller collections or doing
simpler computations. Hence, you should consider both Sequence and Iterable and decide

which one is better for your case.

To create a sequence, call the sequenceOf() function listing the elements as its arguments.

val numbersSequence = sequenceOf("four", "three", "two", "one")

If you already have an Iterable object (such as a List or a Set), you can create a sequence

from it by calling asSequence().

val numbers = listOf("one", "two", "three", "four")
val numbersSequence = numbers.asSequence()

One more way to create a sequence is by building it with a function that calculates its elements.
To build a sequence based on a function, call generateSequence() with this function as an

argument. Optionally, you can specify the rst element as an explicit value or a result of a
function call. The sequence generation stops when the provided function returns null . So, the

sequence in the example below is in nite.

Sequences

Constructing

From elements

From Iterable

From function

183

val oddNumbers = generateSequence(1) { it + 2 } // `it` is the previous element
println(oddNumbers.take(5).toList())
//println(oddNumbers.count()) // error: the sequence is infinite

To create a nite sequence with generateSequence() , provide a function that returns null

after the last element you need.

val oddNumbersLessThan10 = generateSequence(1) { if (it < 10) it + 2 else null }
println(oddNumbersLessThan10.count())

Finally, there is a function that lets you produce sequence elements one by one or by chunks of
arbitrary sizes – the sequence() function. This function takes a lambda expression containing

calls of yield() and yieldAll() functions. They return an element to the sequence consumer

and suspend the execution of sequence() until the next element is requested by the

consumer. yield() takes a single element as an argument; yieldAll() can take an

Iterable object, an Iterator , or another Sequence . A Sequence argument of

yieldAll() can be in nite. However, such a call must be the last: all subsequent calls will

never be executed.

val oddNumbers = sequence {
 yield(1)
 yieldAll(listOf(3, 5))
 yieldAll(generateSequence(7) { it + 2 })
}
println(oddNumbers.take(5).toList())

The sequence operations can be classi ed into the following groups regarding their state
requirements:

Stateless operations require no state and process each element independently, for example,
map() or filter(). Stateless operations can also require a small constant amount of state

to process an element, for example, take() or drop().

Stateful operations require a signi cant amount of state, usually proportional to the number
of elements in a sequence.

If a sequence operation returns another sequence, which is produced lazily, it's called
intermediate. Otherwise, the operation is terminal. Examples of terminal operations are
toList() or sum(). Sequence elements can be retrieved only with terminal operations.

Sequences can be iterated multiple times; however some sequence implementations might
constrain themselves to be iterated only once. That is mentioned speci cally in their
documentation.

From chunks

Sequence operations

—

—

184

Let's take a look at the di erence between Iterable and Sequence with an example.

Assume that you have a list of words. The code below lters the words longer than three
characters and prints the lengths of rst four such words.

val words = "The quick brown fox jumps over the lazy dog".split(" ")
val lengthsList = words.filter { println("filter: $it"); it.length > 3 }
 .map { println("length: ${it.length}"); it.length }
 .take(4)

println("Lengths of first 4 words longer than 3 chars:")
println(lengthsList)

When you run this code, you'll see that the filter() and map() functions are executed in the

same order as they appear in the code. First, you see filter: for all elements, then length:

for the elements left after ltering, and then the output of the two last lines. This is how the list
processing goes:

Now let's write the same with sequences:

val words = "The quick brown fox jumps over the lazy dog".split(" ")
//convert the List to a Sequence
val wordsSequence = words.asSequence()

val lengthsSequence = wordsSequence.filter { println("filter: $it"); it.length > 3 }
 .map { println("length: ${it.length}"); it.length }
 .take(4)

println("Lengths of first 4 words longer than 3 chars")
// terminal operation: obtaining the result as a List
println(lengthsSequence.toList())

The output of this code shows that the filter() and map() functions are called only when

building the result list. So, you rst see the line of text “Lengths of..” and then the sequence

processing starts. Note that for elements left after ltering, the map executes before ltering the
next element. When the result size reaches 4, the processing stops because it's the largest
possible size that take(4) can return.

The sequence processing goes like this:

In this example, the sequence processing takes 18 steps instead of 23 steps for doing the same
with lists.

Sequence processing example

Iterable

Sequence

185

The Kotlin standard library o ers a broad variety of functions for performing operations on
collections. This includes simple operations, such as getting or adding elements, as well as more
complex ones including search, sorting, ltering, transformations, and so on.

Collection operations are declared in the standard library in two ways: member functions of
collection interfaces and extension functions.

Member functions de ne operations that are essential for a collection type. For example,
Collection contains the function isEmpty() for checking its emptiness; List contains get()

for index access to elements, and so on.

When you create own implementations of collection interfaces, you must implement their
member functions. To make the creation of new implementations easier, use the skeletal
implementations of collection interfaces from the standard library: AbstractCollection,

AbstractList, AbstractSet, AbstractMap, and their mutable counterparts.

Other collection operations are declared as extension functions. These are ltering,
transformation, ordering, and other collection processing functions.

Common operations are available for both read-only and mutable collections. Common
operations fall into these groups:

Transformations

Filtering

plus and minus operators

Grouping

Retrieving collection parts

Retrieving single elements

Ordering

Aggregate operations

Operations described on these pages return their results without a ecting the original collection.
For example, a ltering operation produces a new collection that contains all the elements
matching the ltering predicate. Results of such operations should be either stored in variables,
or used in some other way, for example, passed in other functions.

Collection Operations Overview

Extension and member functions

Common operations

—

—

—

—

—

—

—

—

186

val numbers = listOf("one", "two", "three", "four")
numbers.filter { it.length > 3 } // nothing happens with `numbers`, result is lost
println("numbers are still $numbers")
val longerThan3 = numbers.filter { it.length > 3 } // result is stored in `longerThan3`
println("numbers longer than 3 chars are $longerThan3")

For certain collection operations, there is an option to specify the destination object. Destination
is a mutable collection to which the function appends its resulting items instead of returning
them in a new object. For performing operations with destinations, there are separate functions
with the To post x in their names, for example, filterTo() instead of filter() or

associateTo() instead of associate(). These functions take the destination collection as an

additional parameter.

val numbers = listOf("one", "two", "three", "four")
val filterResults = mutableListOf<String>() //destination object
numbers.filterTo(filterResults) { it.length > 3 }
numbers.filterIndexedTo(filterResults) { index, _ -> index == 0 }
println(filterResults) // contains results of both operations

For convenience, these functions return the destination collection back, so you can create it right
in the corresponding argument of the function call:

// filter numbers right into a new hash set,
// thus eliminating duplicates in the result
val result = numbers.mapTo(HashSet()) { it.length }
println("distinct item lengths are $result")

Functions with destination are available for ltering, association, grouping, attening, and other
operations. For the complete list of destination operations see the Kotlin collections reference.

For mutable collections, there are also write operations that change the collection state. Such
operations include adding, removing, and updating elements. Write operations are listed in the
Write operations and corresponding sections of List speci c operations and Map speci c
operations.

For certain operations, there are pairs of functions for performing the same operation: one
applies the operation in-place and the other returns the result as a separate collection. For
example, sort() sorts a mutable collection in-place, so it's state changes; sorted() creates a

new collection that contains the same elements in the sorted order.

val numbers = mutableListOf("one", "two", "three", "four")
val sortedNumbers = numbers.sorted()
println(numbers == sortedNumbers) // false
numbers.sort()
println(numbers == sortedNumbers) // true

Write operations

187

The Kotlin standard library provides a set of extension functions for collection transformations.
These functions build new collections from existing ones based on the transformation rules
provided. In this page, we'll give an overview of the available collection transformation functions.

The mapping transformation creates a collection from the results of a function on the elements
of another collection. The basic mapping function is map(). It applies the given lambda function

to each subsequent element and returns the list of the lambda results. The order of results is the
same as the original order of elements. To apply a transformation that additionally uses the
element index as an argument, use mapIndexed().

val numbers = setOf(1, 2, 3)
println(numbers.map { it * 3 })
println(numbers.mapIndexed { idx, value -> value * idx })

If the transformation produces null on certain elements, you can lter out the null s from the

result collection by calling the mapNotNull() function instead of map() , or

mapIndexedNotNull() instead of mapIndexed() .

val numbers = setOf(1, 2, 3)
println(numbers.mapNotNull { if (it == 2) null else it * 3 })
println(numbers.mapIndexedNotNull { idx, value -> if (idx == 0) null else value * idx })

When transforming maps, you have two options: transform keys leaving values unchanged and
vice versa. To apply a given transformation to keys, use mapKeys(); in turn, mapValues()

transforms values. Both functions use the transformations that take a map entry as an argument,
so you can operate both its key and value.

val numbersMap = mapOf("key1" to 1, "key2" to 2, "key3" to 3, "key11" to 11)
println(numbersMap.mapKeys { it.key.toUpperCase() })
println(numbersMap.mapValues { it.value + it.key.length })

Zipping transformation is building pairs from elements with the same positions in both
collections. In the Kotlin standard library, this is done by the zip() extension function. When

called on a collection or an array with another collection (array) as an argument, zip() returns

the List of Pair objects. The elements of the receiver collection are the rst elements in

these pairs. If the collections have di erent sizes, the result of the zip() is the smaller size; the

last elements of the larger collection are not included in the result. zip() can also be called in

the in x form a zip b .

Collection Transformations

Mapping

Zipping

188

val colors = listOf("red", "brown", "grey")
val animals = listOf("fox", "bear", "wolf")
println(colors zip animals)

val twoAnimals = listOf("fox", "bear")
println(colors.zip(twoAnimals))

You can also call zip() with a transformation function that takes two parameters: the receiver

element and the argument element. In this case, the result List contains the return values of

the transformation function called on pairs of the receiver and the argument elements with the
same positions.

val colors = listOf("red", "brown", "grey")
val animals = listOf("fox", "bear", "wolf")

println(colors.zip(animals) { color, animal -> "The ${animal.capitalize()} is $color"})

When you have a List of Pair s, you can do the reverse transformation – unzipping – that

builds two lists from these pairs:

The rst list contains the rst elements of each Pair in the original list.

The second list contains the second elements.

To unzip a list of pairs, call unzip().

val numberPairs = listOf("one" to 1, "two" to 2, "three" to 3, "four" to 4)
println(numberPairs.unzip())

Association transformations allow building maps from the collection elements and certain values
associated with them. In di erent association types, the elements can be either keys or values in
the association map.

The basic association function associateWith() creates a Map in which the elements of the

original collection are keys, and values are produced from them by the given transformation
function. If two elements are equal, only the last one remains in the map.

val numbers = listOf("one", "two", "three", "four")
println(numbers.associateWith { it.length })

For building maps with collection elements as values, there is the function associateBy(). It

takes a function that returns a key based on an element's value. If two elements are equal, only
the last one remains in the map. associateBy() can also be called with a value transformation

function.

—

—

Association

189

val numbers = listOf("one", "two", "three", "four")

println(numbers.associateBy { it.first().toUpperCase() })
println(numbers.associateBy(keySelector = { it.first().toUpperCase() }, valueTransform =
{ it.length }))

Another way to build maps in which both keys and values are somehow produced from collection
elements is the function associate(). It takes a lambda function that returns a Pair : the key

and the value of the corresponding map entry.

Note that associate() produces short-living Pair objects which may a ect the performance.

Thus, associate() should be used when the performance isn't critical or it's more preferable

than other options.

An example of the latter is when a key and the corresponding value are produced from an
element together.

val names = listOf("Alice Adams", "Brian Brown", "Clara Campbell")
println(names.associate { name -> parseFullName(name).let { it.lastName to it.firstName }
})

Here we call a transform function on an element rst, and then build a pair from the properties
of that function's result.

If you operate nested collections, you may nd the standard library functions that provide at
access to nested collection elements useful.

The rst function is flatten(). You can call it on a collection of collections, for example, a

List of Set s. The function returns a single List of all the elements of the nested collections.

val numberSets = listOf(setOf(1, 2, 3), setOf(4, 5, 6), setOf(1, 2))
println(numberSets.flatten())

Another function – flatMap() provides a exible way to process nested collections. It takes a

function that maps a collection element to another collection. As a result, flatMap() returns a

single list of its return values on all the elements. So, flatMap() behaves as a subsequent call

of map() (with a collection as a mapping result) and flatten() .

val containers = listOf(
 StringContainer(listOf("one", "two", "three")),
 StringContainer(listOf("four", "five", "six")),
 StringContainer(listOf("seven", "eight"))
)
println(containers.flatMap { it.values })

Flattening

String representation

190

If you need to retrieve the collection content in a readable format, use functions that transform
the collections to strings: joinToString() and joinTo().

joinToString() builds a single String from the collection elements based on the provided

arguments. joinTo() does the same but appends the result to the given Appendable object.

When called with the default arguments, the functions return the result similar to calling
toString() on the collection: a String of elements' string representations separated by

commas with spaces.

val numbers = listOf("one", "two", "three", "four")

println(numbers)
println(numbers.joinToString())

val listString = StringBuffer("The list of numbers: ")
numbers.joinTo(listString)
println(listString)

To build a custom string representation, you can specify its parameters in function arguments
separator , prefix , and postfix . The resulting string will start with the prefix and end

with the postfix . The separator will come after each element except the last.

val numbers = listOf("one", "two", "three", "four")
println(numbers.joinToString(separator = " | ", prefix = "start: ", postfix = ": end"))

For bigger collections, you may want to specify the limit – a number of elements that will be

included into result. If the collection size exceeds the limit , all the other elements will be

replaced with a single value of the truncated argument.

val numbers = (1..100).toList()
println(numbers.joinToString(limit = 10, truncated = "<...>"))

Finally, to customize the representation of elements themselves, provide the transform

function.

val numbers = listOf("one", "two", "three", "four")
println(numbers.joinToString { "Element: ${it.toUpperCase()}"})

191

Filtering is one of the most popular tasks in the collection processing. In Kotlin, ltering
conditions are de ned by predicates – lambda functions that take a collection element and return
a boolean value: true means that the given element matches the predicate, false means the

opposite.

The standard library contains a group of extension functions that let you lter collections in a
single call. These functions leave the original collection unchanged, so they are available for both
mutable and read-only collections. To operate the ltering result, you should assign it to a
variable or chain the functions after ltering.

The basic ltering function is filter(). When called with a predicate, filter() returns the

collection elements that match it. For both List and Set , the resulting collection is a List ,

for Map it's a Map as well.

val numbers = listOf("one", "two", "three", "four")
val longerThan3 = numbers.filter { it.length > 3 }
println(longerThan3)

val numbersMap = mapOf("key1" to 1, "key2" to 2, "key3" to 3, "key11" to 11)
val filteredMap = numbersMap.filter { (key, value) -> key.endsWith("1") && value > 10}
println(filteredMap)

The predicates in filter() can only check the values of the elements. If you want to use

element positions in the lter, use filterIndexed(). It takes a predicate with two arguments:

the index and the value of an element.

To lter collections by negative conditions, use filterNot(). It returns a list of elements for

which the predicate yields false .

val numbers = listOf("one", "two", "three", "four")

val filteredIdx = numbers.filterIndexed { index, s -> (index != 0) && (s.length < 5) }
val filteredNot = numbers.filterNot { it.length <= 3 }

println(filteredIdx)
println(filteredNot)

There are also functions that narrow the element type by ltering elements of a given type:

filterIsInstance() returns collection elements of a given type. Being called on a

List<Any> , filterIsInstance<T>() returns a List<T> , thus allowing you to call

functions of the T type on its items.

Filtering

Filtering by predicate

—

192

val numbers = listOf(null, 1, "two", 3.0, "four")
println("All String elements in upper case:")
numbers.filterIsInstance<String>().forEach {
 println(it.toUpperCase())
}

filterNotNull() returns all non-null elements. Being called on a List<T?> ,

filterNotNull() returns a List<T: Any> , thus allowing you to treat the elements as

non-null objects.

val numbers = listOf(null, "one", "two", null)
numbers.filterNotNull().forEach {
 println(it.length) // length is unavailable for nullable Strings
}

Another ltering function – partition() – lters a collection by a predicate and keeps the

elements that don't match it in a separate list. So, you have a Pair of List s as a return value:

the rst list containing elements that match the predicate and the second one containing
everything else from the original collection.

val numbers = listOf("one", "two", "three", "four")
val (match, rest) = numbers.partition { it.length > 3 }

println(match)
println(rest)

Finally, there are functions that simply test a predicate against collection elements:

any() returns true if at least one element matches the given predicate.

none() returns true if none of the elements match the given predicate.

all() returns true if all elements match the given predicate. Note that all() returns

true when called with any valid predicate on an empty collection. Such behavior is known in

logic as vacuous truth.

val numbers = listOf("one", "two", "three", "four")

println(numbers.any { it.endsWith("e") })
println(numbers.none { it.endsWith("a") })
println(numbers.all { it.endsWith("e") })

println(emptyList<Int>().all { it > 5 }) // vacuous truth

any() and none() can also be used without a predicate: in this case they just check the

collection emptiness. any() returns true if there are elements and false if there aren't;

none() does the opposite.

—

Partitioning

Testing predicates

—

—

—

193

https://en.wikipedia.org/wiki/Vacuous_truth

val numbers = listOf("one", "two", "three", "four")
val empty = emptyList<String>()

println(numbers.any())
println(empty.any())

println(numbers.none())
println(empty.none())

194

In Kotlin, plus (+) and minus (-) operators are de ned for collections. They take a collection as

the rst operand; the second operand can be either an element or another collection. The return
value is a new read-only collection:

The result of plus contains the elements from the original collection and from the second

operand.

The result of minus contains the elements of the original collection except the elements from

the second operand. If it's an element, minus removes its rst occurrence; if it's a collection,

all occurrences of its elements are removed.

val numbers = listOf("one", "two", "three", "four")

val plusList = numbers + "five"
val minusList = numbers - listOf("three", "four")
println(plusList)
println(minusList)

For the details on plus and minus operators for maps, see Map Speci c Operations. The

augmented assignment operators plusAssign (+=) and minusAssign (-=) are also de ned

for collections. However, for read-only collections, they actually use the plus or minus

operators and try to assign the result to the same variable. Thus, they are available only on var

read-only collections. For mutable collections, they modify the collection if it's a val . For more

details see Collection Write Operations.

plus and minus Operators

—

—

195

The Kotlin standard library provides extension functions for grouping collection elements. The
basic function groupBy() takes a lambda function and returns a Map . In this map, each key is

the lambda result and the corresponding value is the List of elements on which this result is

returned. This function can be used, for example, to group a list of String s by their rst letter.

You can also call groupBy() with a second lambda argument – a value transformation function.

In the result map of groupBy() with two lambdas, the keys produced by keySelector

function are mapped to the results of the value transformation function instead of the original
elements.

val numbers = listOf("one", "two", "three", "four", "five")

println(numbers.groupBy { it.first().toUpperCase() })
println(numbers.groupBy(keySelector = { it.first() }, valueTransform = { it.toUpperCase()
}))

If you want to group elements and then apply an operation to all groups at one time, use the
function groupingBy(). It returns an instance of the Grouping type. The Grouping instance

lets you apply operations to all groups in a lazy manner: the groups are actually built right before
the operation execution.

Namely, Grouping supports the following operations:

eachCount() counts the elements in each group.

fold() and reduce() perform fold and reduce operations on each group as a separate

collection and return the results.

aggregate() applies a given operation subsequently to all the elements in each group and

returns the result. This is the generic way to perform any operations on a Grouping . Use it

to implement custom operations when fold or reduce are not enough.

val numbers = listOf("one", "two", "three", "four", "five", "six")
println(numbers.groupingBy { it.first() }.eachCount())

Grouping

—

—

—

196

The Kotlin standard library contains extension functions for retrieving parts of a collection. These
functions provide a variety of ways to select elements for the result collection: listing their
positions explicitly, specifying the result size, and others.

slice() returns a list of the collection elements with given indices. The indices may be passed

either as a range or as a collection of integer values.

val numbers = listOf("one", "two", "three", "four", "five", "six")
println(numbers.slice(1..3))
println(numbers.slice(0..4 step 2))
println(numbers.slice(setOf(3, 5, 0)))

To get the speci ed number of elements starting from the rst, use the take() function. For

getting the last elements, use takeLast(). When called with a number larger than the collection

size, both functions return the whole collection.

To take all the elements except a given number of rst or last elements, call the drop() and

dropLast() functions respectively.

val numbers = listOf("one", "two", "three", "four", "five", "six")
println(numbers.take(3))
println(numbers.takeLast(3))
println(numbers.drop(1))
println(numbers.dropLast(5))

You can also use predicates to de ne the number of elements for taking or dropping. There are
four functions similar to the ones described above:

takeWhile() is take() with a predicate: it takes the elements up to but excluding the rst

one not matching the predicate. If the rst collection element doesn't match the predicate, the
result is empty.

takeLastWhile() is similar to takeLast() : it takes the range of elements matching the

predicate from the end of the collection. The rst element of the range is the element next to
the last element not matching the predicate. If the last collection element doesn't match the
predicate, the result is empty;

dropWhile() is the opposite to takeWhile() with the same predicate: it returns the

elements from the rst one not matching the predicate to the end.

dropLastWhile() is the opposite to takeLastWhile() with the same predicate: it returns

the elements from the beginning to the last one not matching the predicate.

Retrieving Collection Parts

Slice

Take and drop

—

—

—

—

197

val numbers = listOf("one", "two", "three", "four", "five", "six")
println(numbers.takeWhile { !it.startsWith('f') })
println(numbers.takeLastWhile { it != "three" })
println(numbers.dropWhile { it.length == 3 })
println(numbers.dropLastWhile { it.contains('i') })

To break a collection onto parts of a given size, use the chunked() function. chunked() takes

a single argument – the size of the chunk – and returns a List of List s of the given size. The

rst chunk starts from the rst element and contains the size elements, the second chunk

holds the next size elements, and so on. The last chunk may have a smaller size.

val numbers = (0..13).toList()
println(numbers.chunked(3))

You can also apply a transformation for the returned chunks right away. To do this, provide the
transformation as a lambda function when calling chunked() . The lambda argument is a chunk

of the collection. When chunked() is called with a transformation, the chunks are short-living

List s that should be consumed right in that lambda.

val numbers = (0..13).toList()
println(numbers.chunked(3) { it.sum() }) // `it` is a chunk of the original collection

You can retrieve all possible ranges of the collection elements of a given size. The function for
getting them is called windowed(): it returns a list of element ranges that you would see if you

were looking at the collection through a sliding window of the given size. Unlike chunked() ,

windowed() returns element ranges (windows) starting from each collection element. All the

windows are returned as elements of a single List .

val numbers = listOf("one", "two", "three", "four", "five")
println(numbers.windowed(3))

windowed() provides more exibility with optional parameters:

step de nes a distance between rst elements of two adjacent windows. By default the

value is 1, so the result contains windows starting from all elements. If you increase the step
to 2, you will receive only windows starting from odd elements: rst, third, an so on.

partialWindows includes windows of smaller sizes that start from the elements at the end

of the collection. For example, if you request windows of three elements, you can't build them
for the last two elements. Enabling partialWindows in this case includes two more lists of

sizes 2 and 1.

Finally, you can apply a transformation to the returned ranges right away. To do this, provide the
transformation as a lambda function when calling windowed() .

Chunked

Windowed

—

—

198

val numbers = (1..10).toList()
println(numbers.windowed(3, step = 2, partialWindows = true))
println(numbers.windowed(3) { it.sum() })

To build two-element windows, there is a separate function - zipWithNext(). It creates pairs of

adjacent elements of the receiver collection. Note that zipWithNext() doesn't break the

collection into pairs; it creates a Pair for each element except the last one, so its result on [1,

2, 3, 4] is [[1, 2], [2, 3], [3, 4]] , not [[1, 2], [3, 4]] . zipWithNext() can

be called with a transformation function as well; it should take two elements of the receiver
collection as arguments.

val numbers = listOf("one", "two", "three", "four", "five")
println(numbers.zipWithNext())
println(numbers.zipWithNext() { s1, s2 -> s1.length > s2.length})

199

Kotlin collections provide a set of functions for retrieving single elements from collections.
Functions described on this page apply to both lists and sets.

As the de nition of list says, a list is an ordered collection. Hence, every element of a list has its
position that you can use for referring. In addition to functions described on this page, lists o er
a wider set of ways to retrieve and search for elements by indices. For more details, see List
Speci c Operations.

In turn, set is not an ordered collection by de nition. However, the Kotlin Set stores elements in

certain orders. These can be the order of insertion (in LinkedHashSet), natural sorting order

(in SortedSet), or another order. The order of a set of elements can also be unknown. In such

cases, the elements are still ordered somehow, so the functions that rely on the element
positions still return their results. However, such results are unpredictable to the caller unless
they know the speci c implementation of Set used.

For retrieving an element at a speci c position, there is the function elementAt(). Call it with

the integer number as an argument, and you'll receive the collection element at the given
position. The rst element has the position 0 , and the last one is (size - 1) .

elementAt() is useful for collections that do not provide indexed access, or are not statically

known to provide one. In case of List , it's more idiomatic to use indexed access operator

(get() or []).

val numbers = linkedSetOf("one", "two", "three", "four", "five")
println(numbers.elementAt(3))

val numbersSortedSet = sortedSetOf("one", "two", "three", "four")
println(numbersSortedSet.elementAt(0)) // elements are stored in the ascending order

There are also useful aliases for retrieving the rst and the last element of the collection:
first() and last().

val numbers = listOf("one", "two", "three", "four", "five")
println(numbers.first())
println(numbers.last())

To avoid exceptions when retrieving element with non-existing positions, use safe variations of
elementAt() :

elementAtOrNull() returns null when the speci ed position is out of the collection bounds.

elementAtOrElse() additionally takes a lambda function that maps an Int argument to an

instance of the collection element type. When called with an out-of-bounds position, the
elementAtOrElse() returns the result of the lambda on the given value.

Retrieving Single Elements

Retrieving by position

—

—

200

val numbers = listOf("one", "two", "three", "four", "five")
println(numbers.elementAtOrNull(5))
println(numbers.elementAtOrElse(5) { index -> "The value for index $index is undefined"})

Functions first() and last() also let you search a collection for elements matching a given

predicate. When you call first() with a predicate that tests a collection element, you'll receive

the rst element on which the predicate yields true . In turn, last() with a predicate returns

the last element matching it.

val numbers = listOf("one", "two", "three", "four", "five", "six")
println(numbers.first { it.length > 3 })
println(numbers.last { it.startsWith("f") })

If no elements match the predicate, both functions throw exceptions. To avoid them, use
firstOrNull() and lastOrNull() instead: they return null if no matching elements are

found.

val numbers = listOf("one", "two", "three", "four", "five", "six")
println(numbers.firstOrNull { it.length > 6 })

Alternatively, you can use the aliases if their names suit your situation better:

find() instead of firstOrNull()

findLast() instead of lastOrNull()

val numbers = listOf(1, 2, 3, 4)
println(numbers.find { it % 2 == 0 })
println(numbers.findLast { it % 2 == 0 })

If you need to retrieve an arbitrary element of a collection, call the random() function. You can

call it without arguments or with a Random object as a source of the randomness.

val numbers = listOf(1, 2, 3, 4)
println(numbers.random())

To check the presence of an element in a collection, use the contains() function. It returns

true if there is a collection element that equals() the function argument. You can call

contains() in the operator form with the in keyword.

To check the presence of multiple instances together at once, call containsAll() with a

collection of these instances as an argument.

Retrieving by condition

—

—

Random element

Checking existence

201

val numbers = listOf("one", "two", "three", "four", "five", "six")
println(numbers.contains("four"))
println("zero" in numbers)

println(numbers.containsAll(listOf("four", "two")))
println(numbers.containsAll(listOf("one", "zero")))

Additionally, you can check if the collection contains any elements by calling isEmpty() or

isNotEmpty().

val numbers = listOf("one", "two", "three", "four", "five", "six")
println(numbers.isEmpty())
println(numbers.isNotEmpty())

val empty = emptyList<String>()
println(empty.isEmpty())
println(empty.isNotEmpty())

202

The order of elements is an important aspect of certain collection types. For example, two lists of
the same elements are not equal if their elements are ordered di erently.

In Kotlin, the orders of objects can be de ned in several ways.

First, there is natural order. It is de ned for inheritors of the Comparable interface. Natural

order is used for sorting them when no other order is speci ed.

Most built-in types are comparable:

Numeric types use the traditional numerical order: 1 is greater than 0 ; -3.4f is greater

than -5f , an so on.

Char and String use the lexicographical order: b is greater than a ; world is greater

than hello .

To de ne a natural order for a user-de ned type, make the type an inheritor of Comparable .

This requires implementing the compareTo() function. compareTo() must take another

object of the same type as an argument and return an integer value showing which object is
greater:

Positive values show that the receiver object is greater.

Negative values show that it's less than the argument.

Zero shows that the objects are equal.

Below is a class that can be used for ordering versions that consist of the major and the minor
part.

class Version(val major: Int, val minor: Int): Comparable<Version> {
 override fun compareTo(other: Version): Int {
 if (this.major != other.major) {
 return this.major - other.major
 } else if (this.minor != other.minor) {
 return this.minor - other.minor
 } else return 0
 }
}

fun main() {
 println(Version(1, 2) > Version(1, 3))
 println(Version(2, 0) > Version(1, 5))
}

Collection Ordering

—

—

—

—

—

203

https://en.wikipedia.org/wiki/Lexicographical_order

Custom orders let you sort instances of any type in a way you like. Particularly, you can de ne an
order for non-comparable objects or de ne an order other than natural for a comparable type.
To de ne a custom order for a type, create a Comparator for it. Comparator contains the

compare() function: it takes two instances of a class and returns the integer result of the

comparison between them. The result is interpreted in the same way as the result of a
compareTo() as is described above.

val lengthComparator = Comparator { str1: String, str2: String -> str1.length -
str2.length }
println(listOf("aaa", "bb", "c").sortedWith(lengthComparator))

Having the lengthComparator , you are able to arrange strings by their length instead of the

default lexicographical order.

A shorter way to de ne a Comparator is the compareBy() function from the standard library.

compareBy() takes a lambda function that produces a Comparable value from an instance

and de nes the custom order as the natural order of the produced values. With compareBy() ,

the length comparator from the example above looks like this:

tln(listOf("aaa", "bb", "c").sortedWith(compareBy { it.length }))

The Kotlin collections package provides functions for sorting collections in natural, custom, and
even random orders. On this page, we'll describe sorting functions that apply to read-only
collections. These functions return their result as a new collection containing the elements of the
original collection in the requested order. To learn about functions for sorting mutable
collections in place, see the List Speci c Operations.

The basic functions sorted() and sortedDescending() return elements of a collection sorted

into ascending and descending sequence according to their natural order. These functions apply
to collections of Comparable elements.

val numbers = listOf("one", "two", "three", "four")

println("Sorted ascending: ${numbers.sorted()}")
println("Sorted descending: ${numbers.sortedDescending()}")

For sorting in custom orders or sorting non-comparable objects, there are the functions
sortedBy() and sortedByDescending(). They take a selector function that maps collection

elements to Comparable values and sort the collection in natural order of that values.

Natural order

Custom orders

204

val numbers = listOf("one", "two", "three", "four")

val sortedNumbers = numbers.sortedBy { it.length }
println("Sorted by length ascending: $sortedNumbers")
val sortedByLast = numbers.sortedByDescending { it.last() }
println("Sorted by the last letter descending: $sortedByLast")

To de ne a custom order for the collection sorting, you can provide your own Comparator . To

do this, call the sortedWith() function passing in your Comparator . With this function,

sorting strings by their length looks like this:

val numbers = listOf("one", "two", "three", "four")
println("Sorted by length ascending: ${numbers.sortedWith(compareBy { it.length })}")

You can retrieve the collection in the reversed order using the reversed() function.

val numbers = listOf("one", "two", "three", "four")
println(numbers.reversed())

reversed() returns a new collection with the copies of the elements. So, if you change the

original collection later, this won't a ect the previously obtained results of reversed() .

Another reversing function - asReversed() - returns a reversed view of the same collection

instance, so it may be more lightweight and preferable than reversed() if the original list is

not going to change.

val numbers = listOf("one", "two", "three", "four")
val reversedNumbers = numbers.asReversed()
println(reversedNumbers)

If the original list is mutable, all its changes re ect in its reversed views and vice versa.

val numbers = mutableListOf("one", "two", "three", "four")
val reversedNumbers = numbers.asReversed()
println(reversedNumbers)
numbers.add("five")
println(reversedNumbers)

However, if the mutability of the list is unknown or the source is not a list at all, reversed() is

more preferable since its result is a copy that won't change in the future.

Finally, there is a function that returns a new List containing the collection elements in a

random order - shuffled(). You can call it without arguments or with a Random object.

 val numbers = listOf("one", "two", "three", "four")
 println(numbers.shuffled())

Reverse order

Random order

205

Kotlin collections contain functions for commonly used aggregate operations – operations that
return a single value based on the collection content. Most of them are well known and work the
same way as they do in other languages:

min() and max() return the smallest and the largest element respectively;

average() returns the average value of elements in the collection of numbers;

sum() returns the sum of elements in the collection of numbers;

count() returns the number of elements in a collection;

val numbers = listOf(6, 42, 10, 4)

println("Count: ${numbers.count()}")
println("Max: ${numbers.max()}")
println("Min: ${numbers.min()}")
println("Average: ${numbers.average()}")
println("Sum: ${numbers.sum()}")

There are also functions for retrieving the smallest and the largest elements by certain selector
function or custom Comparator:

maxBy()/minBy() take a selector function and return the element for which it returns the

largest or the smallest value.

maxWith()/minWith() take a Comparator object and return the largest or smallest

element according to that Comparator .

val numbers = listOf(5, 42, 10, 4)
val min3Remainder = numbers.minBy { it % 3 }
println(min3Remainder)

val strings = listOf("one", "two", "three", "four")
val longestString = strings.maxWith(compareBy { it.length })
println(longestString)

Additionally, there are advanced summation functions that take a function and return the sum of
its return values on all elements:

sumBy() applies functions that return Int values on collection elements.

sumByDouble() works with functions that return Double .

val numbers = listOf(5, 42, 10, 4)
println(numbers.sumBy { it * 2 })
println(numbers.sumByDouble { it.toDouble() / 2 })

Collection Aggregate Operations

—

—

—

—

—

—

—

—

Fold and reduce

206

For more speci c cases, there are the functions reduce() and fold() that apply the provided

operation to the collection elements sequentially and return the accumulated result. The
operation takes two arguments: the previously accumulated value and the collection element.

The di erence between the two functions is that fold() takes an initial value and uses it as the

accumulated value on the rst step, whereas the rst step of reduce() uses the rst and the

second elements as operation arguments on the rst step.

val numbers = listOf(5, 2, 10, 4)

val sum = numbers.reduce { sum, element -> sum + element }
println(sum)
val sumDoubled = numbers.fold(0) { sum, element -> sum + element * 2 }
println(sumDoubled)

//val sumDoubledReduce = numbers.reduce { sum, element -> sum + element * 2 }
//incorrect: the first element isn't doubled in the result
//println(sumDoubledReduce)

The example above shows the di erence: fold() is used for calculating the sum of doubled

elements. If you pass the same function to reduce() , it will return another result because it

uses the list's rst and second elements as arguments on the rst step, so the rst element won't
be doubled.

To apply a function to elements in the reverse order, use functions reduceRight() and

foldRight(). They work in a way similar to fold() and reduce() but start from the last

element and then continue to previous. Note that when folding or reducing right, the operation
arguments change their order: rst goes the element, and then the accumulated value.

val numbers = listOf(5, 2, 10, 4)
val sumDoubledRight = numbers.foldRight(0) { element, sum -> sum + element * 2 }
println(sumDoubledRight)

You can also apply operations that take element indices as parameters. For this purpose, use
functions reduceIndexed() and foldIndexed() passing element index as the rst argument

of the operation.

Finally, there are functions that apply such operations to collection elements from right to left -
reduceRightIndexed() and foldRightIndexed().

val numbers = listOf(5, 2, 10, 4)
val sumEven = numbers.foldIndexed(0) { idx, sum, element -> if (idx % 2 == 0) sum +
element else sum }
println(sumEven)

val sumEvenRight = numbers.foldRightIndexed(0) { idx, element, sum -> if (idx % 2 == 0)
sum + element else sum }
println(sumEvenRight)

207

Mutable collections support operations for changing the collection contents, for example, adding
or removing elements. On this page, we'll describe write operations available for all
implementations of MutableCollection . For more speci c operations available for List and

Map , see List Speci c Operations and Map Speci c Operations respectively.

To add a single element to a list or a set, use the add() function. The speci ed object is

appended to the end of the collection.

val numbers = mutableListOf(1, 2, 3, 4)
numbers.add(5)
println(numbers)

addAll() adds every element of the argument object to a list or a set. The argument can be an

Iterable , a Sequence , or an Array . The types of the receiver and the argument may be

di erent, for example, you can add all items from a Set to a List .

When called on lists, addAll() adds new elements in the same order as they go in the

argument. You can also call addAll() specifying an element position as the rst argument. The

rst element of the argument collection will be inserted at this position. Other elements of the
argument collection will follow it, shifting the receiver elements to the end.

val numbers = mutableListOf(1, 2, 5, 6)
numbers.addAll(arrayOf(7, 8))
println(numbers)
numbers.addAll(2, setOf(3, 4))
println(numbers)

You can also add elements using the in-place version of the plus operator - plusAssign (+=)

When applied to a mutable collection, += appends the second operand (an element or another

collection) to the end of the collection.

val numbers = mutableListOf("one", "two")
numbers += "three"
println(numbers)
numbers += listOf("four", "five")
println(numbers)

To remove an element from a mutable collection, use the remove() function. remove()

accepts the element value and removes one occurrence of this value.

Collection Write Operations

Adding elements

Removing elements

208

val numbers = mutableListOf(1, 2, 3, 4, 3)
numbers.remove(3) // removes the first `3`
println(numbers)
numbers.remove(5) // removes nothing
println(numbers)

For removing multiple elements at once, there are the following functions :

removeAll() removes all elements that are present in the argument collection. Alternatively,

you can call it with a predicate as an argument; in this case the function removes all elements
for which the predicate yields true .

retainAll() is the opposite of removeAll() : it removes all elements except the ones

from the argument collection. When used with a predicate, it leaves only elements that match
it.

clear() removes all elements from a list and leaves it empty.

val numbers = mutableListOf(1, 2, 3, 4)
println(numbers)
numbers.retainAll { it >= 3 }
println(numbers)
numbers.clear()
println(numbers)

val numbersSet = mutableSetOf("one", "two", "three", "four")
numbersSet.removeAll(setOf("one", "two"))
println(numbersSet)

Another way to remove elements from a collection is with the minusAssign (-=) operator – the

in-place version of minus. The second argument can be a single instance of the element type or

another collection. With a single element on the right-hand side, -= removes the rst occurrence

of it. In turn, if it's a collection, all occurrences of its elements are removed. For example, if a list
contains duplicate elements, they are removed at once. The second operand can contain
elements that are not present in the collection. Such elements don't a ect the operation
execution.

val numbers = mutableListOf("one", "two", "three", "three", "four")
numbers -= "three"
println(numbers)
numbers -= listOf("four", "five")
//numbers -= listOf("four") // does the same as above
println(numbers)

Lists and sets also provide operations for updating elements. They are described in List Speci c
Operations and Map Speci c Operations. For sets, updating doesn't make sense since it's actually
removing an element and adding another one.

—

—

—

Updating elements

209

List is the most popular type of built-in collection in Kotlin. Index access to the elements of lists

provides a powerful set of operations for lists.

Lists support all common operations for element retrieval: elementAt() , first() , last() ,

and others listed in Retrieving Single Elements. What is speci c for lists is index access to the
elements, so the simplest way to read an element is retrieving it by index. That is done with the
get() function with the index passed in the argument or the shorthand [index] syntax.

If the list size is less than the speci ed index, an exception is thrown. There are two other
functions that help you avoid such exceptions:

getOrElse() lets you provide the function for calculating the default value to return if the

index isn't present in the collection.

getOrNull() returns null as the default value.

val numbers = listOf(1, 2, 3, 4)
println(numbers.get(0))
println(numbers[0])
//numbers.get(5) // exception!
println(numbers.getOrNull(5)) // null
println(numbers.getOrElse(5, {it})) // 5

In addition to common operations for Retrieving Collection Parts, lists provide the subList()

function that returns a view of the speci ed elements range as a list. Thus, if an element of the
original collection changes, it also changes in the previously created sublists and vice versa.

val numbers = (0..13).toList()
println(numbers.subList(3, 6))

In any lists, you can nd the position of an element using the functions indexOf() and

lastIndexOf(). They return the rst and the last position of an element equal to the given

argument in the list. If there are no such elements, both functions return -1 .

val numbers = listOf(1, 2, 3, 4, 2, 5)
println(numbers.indexOf(2))
println(numbers.lastIndexOf(2))

There is also a pair of functions that take a predicate and search for elements matching it:

List Speci c Operations

Retrieving elements by index

—

—

Retrieving list parts

Finding element positions

Linear search

210

indexOfFirst() returns the index of the rst element matching the predicate or -1 if there

are no such elements.

indexOfLast() returns the index of the last element matching the predicate or -1 if there

are no such elements.

val numbers = mutableListOf(1, 2, 3, 4)
println(numbers.indexOfFirst { it > 2})
println(numbers.indexOfLast { it % 2 == 1})

There is one more way to search elements in lists – binary search. It works signi cantly faster
than other built-in search functions but requires the list to be sorted in ascending order according
to a certain ordering: natural or another one provided in the function parameter. Otherwise, the
result is unde ned.

To search an element in a sorted list, call the binarySearch() function passing the value as an

argument. If such an element exists, the function returns its index; otherwise, it returns (-

insertionPoint - 1) where insertionPoint is the index where this element should be

inserted so that the list remains sorted. If there is more than one element with the given value,
the search can return any of their indices.

You can also specify an index range to search in: in this case, the function searches only between
two provided indices.

val numbers = mutableListOf("one", "two", "three", "four")
numbers.sort()
println(numbers)
println(numbers.binarySearch("two")) // 3
println(numbers.binarySearch("z")) // -5
println(numbers.binarySearch("two", 0, 2)) // -3

When list elements aren't Comparable , you should provide a Comparator to use in the binary

search. The list must be sorted in ascending order according to this Comparator . Let's have a

look at an example:

val productList = listOf(
 Product("WebStorm", 49.0),
 Product("AppCode", 99.0),
 Product("DotTrace", 129.0),
 Product("ReSharper", 149.0))

println(productList.binarySearch(Product("AppCode", 99.0), compareBy<Product> { it.price
}.thenBy { it.name }))

—

—

Binary search in sorted lists

Comparator binary search

211

https://en.wikipedia.org/wiki/Binary_search_algorithm

Here's a list of Product instances that aren't Comparable and a Comparator that de nes the

order: product p1 precedes product p2 if p1 's price is less than p2 's price. So, having a list

sorted ascending according to this order, we use binarySearch() to nd the index of the

speci ed Product .

Custom comparators are also handy when a list uses an order di erent from natural one, for
example, a case-insensitive order for String elements.

val colors = listOf("Blue", "green", "ORANGE", "Red", "yellow")
println(colors.binarySearch("RED", String.CASE_INSENSITIVE_ORDER)) // 3

Binary search with comparison function lets you nd elements without providing explicit search
values. Instead, it takes a comparison function mapping elements to Int values and searches for

the element where the function returns zero. The list must be sorted in the ascending order
according to the provided function; in other words, the return values of comparison must grow
from one list element to the next one.

data class Product(val name: String, val price: Double)

fun priceComparison(product: Product, price: Double) = sign(product.price -
price).toInt()

fun main() {
 val productList = listOf(
 Product("WebStorm", 49.0),
 Product("AppCode", 99.0),
 Product("DotTrace", 129.0),
 Product("ReSharper", 149.0))

 println(productList.binarySearch { priceComparison(it, 99.0) })
}

Both comparator and comparison binary search can be performed for list ranges as well.

In addition to the collection modi cation operations described in Collection Write Operations,
mutable lists support speci c write operations. Such operations use the index to access elements
to broaden the list modi cation capabilities.

To add elements to a speci c position in a list, use add() and addAll() providing the position

for element insertion as an additional argument. All elements that come after the position shift
to the right.

Comparison binary search

List write operations

Adding

212

val numbers = mutableListOf("one", "five", "six")
numbers.add(1, "two")
numbers.addAll(2, listOf("three", "four"))
println(numbers)

Lists also o er a function to replace an element at a given position - set() and its operator form

[] . set() doesn't change the indexes of other elements.

val numbers = mutableListOf("one", "five", "three")
numbers[1] = "two"
println(numbers)

fill() simply replaces all the collection elements with the speci ed value.

val numbers = mutableListOf(1, 2, 3, 4)
numbers.fill(3)
println(numbers)

To remove an element at a speci c position from a list, use the removeAt() function providing

the position as an argument. All indices of elements that come after the element being removed
will decrease by one.

val numbers = mutableListOf(1, 2, 3, 4, 3)
numbers.removeAt(1)
println(numbers)

In Collection Ordering, we describe operations that retrieve collection elements in speci c
orders. For mutable lists, the standard library o ers similar extension functions that perform the
same ordering operations in place. When you apply such an operation to a list instance, it
changes the order of elements in that exact instance.

The in-place sorting functions have similar names to the functions that apply to read-only lists,
but without the ed/d su x:

sort* instead of sorted* in the names of all sorting functions: sort(),

sortDescending(), sortBy(), and so on.

shuffle() instead of shuffled() .

reverse() instead of reversed() .

Updating

Removing

Sorting

—

—

—

213

asReversed() called on a mutable list returns another mutable list which is a reversed view of

the original list. Changes in that view are re ected in the original list. The following example
shows sorting functions for mutable lists:

val numbers = mutableListOf("one", "two", "three", "four")

numbers.sort()
println("Sort into ascending: $numbers")
numbers.sortDescending()
println("Sort into descending: $numbers")

numbers.sortBy { it.length }
println("Sort into ascending by length: $numbers")
numbers.sortByDescending { it.last() }
println("Sort into descending by the last letter: $numbers")

numbers.sortWith(compareBy<String> { it.length }.thenBy { it })
println("Sort by Comparator: $numbers")

numbers.shuffle()
println("Shuffle: $numbers")

numbers.reverse()
println("Reverse: $numbers")

214

The Kotlin collections package contains extension functions for popular operations on sets:
nding intersections, merging, or subtracting collections from each other.

To merge two collections into one, use the union() function. It can be used in the in x form a

union b . Note that for ordered collections the order of the operands is important: in the

resulting collection, the elements of the rst operand go before the elements of the second.

To nd an intersection between two collections (elements present in both of them), use
intersect(). To nd collection elements not present in another collection, use subtract().

Both these functions can be called in the in x form as well, for example, a intersect b .

val numbers = setOf("one", "two", "three")

println(numbers union setOf("four", "five"))
println(setOf("four", "five") union numbers)

println(numbers intersect setOf("two", "one"))
println(numbers subtract setOf("three", "four"))
println(numbers subtract setOf("four", "three")) // same output

Note that set operations are supported by List as well. However, the result of set operations

on lists is still a Set , so all the duplicate elements are removed.

Set Speci c Operations

215

In maps, types of both keys and values are user-de ned. Key-based access to map entries
enables various map-speci c processing capabilities from getting a value by key to separate

ltering of keys and values. On this page, we provide descriptions of the map processing
functions from the standard library.

For retrieving a value from a map, you must provide its key as an argument of the get()

function. The shorthand [key] syntax is also supported. If the given key is not found, it returns

null . There is also the function getValue() which has slightly di erent behavior: it throws an

exception if the key is not found in the map. Additionally, you have two more options to handle
the key absence:

getOrElse() works the same way as for lists: the values for non-existent keys are returned

from the given lambda function.

getOrDefault() returns the speci ed default value if the key is not found.

val numbersMap = mapOf("one" to 1, "two" to 2, "three" to 3)
println(numbersMap.get("one"))
println(numbersMap["one"])
println(numbersMap.getOrDefault("four", 10))
println(numbersMap["five"]) // null
//numbersMap.getValue("six") // exception!

To perform operations on all keys or all values of a map, you can retrieve them from the
properties keys and values accordingly. keys is a set of all map keys and values is a

collection of all map values.

val numbersMap = mapOf("one" to 1, "two" to 2, "three" to 3)
println(numbersMap.keys)
println(numbersMap.values)

You can lter maps with the filter() function as well as other collections. When calling

filter() on a map, pass to it a predicate with a Pair as an argument. This enables you to use

both the key and the value in the ltering predicate.

val numbersMap = mapOf("key1" to 1, "key2" to 2, "key3" to 3, "key11" to 11)
val filteredMap = numbersMap.filter { (key, value) -> key.endsWith("1") && value > 10}
println(filteredMap)

There are also two speci c ways for ltering maps: by keys and by values. For each way, there is a
function: filterKeys() and filterValues(). Both return a new map of entries which match

the given predicate. The predicate for filterKeys() checks only the element keys, the one for

filterValues() checks only values.

Map Speci c Operations

Retrieving keys and values

—

—

Filtering

216

val numbersMap = mapOf("key1" to 1, "key2" to 2, "key3" to 3, "key11" to 11)
val filteredKeysMap = numbersMap.filterKeys { it.endsWith("1") }
val filteredValuesMap = numbersMap.filterValues { it < 10 }

println(filteredKeysMap)
println(filteredValuesMap)

Due to the key access to elements, plus (+) and minus (-) operators work for maps di erently

than for other collections. plus returns a Map that contains elements of its both operands: a

Map on the left and a Pair or another Map on the right. When the right-hand side operand

contains entries with keys present in the left-hand side Map , the result map contains the entries

from the right side.

val numbersMap = mapOf("one" to 1, "two" to 2, "three" to 3)
println(numbersMap + Pair("four", 4))
println(numbersMap + Pair("one", 10))
println(numbersMap + mapOf("five" to 5, "one" to 11))

minus creates a Map from entries of a Map on the left except those with keys from the right-

hand side operand. So, the right-hand side operand can be either a single key or a collection of
keys: list, set, and so on.

val numbersMap = mapOf("one" to 1, "two" to 2, "three" to 3)
println(numbersMap - "one")
println(numbersMap - listOf("two", "four"))

For details on using plusAssign (+=) and minusAssign (-=) operators on mutable maps, see

Map write operations below.

Mutable maps o er map-speci c write operations. These operations let you change the map
content using the key-based access to the values.

There are certain rules that de ne write operations on maps:

Values can be updated. In turn, keys never change: once you add an entry, its key is constant.

For each key, there is always a single value associated with it. You can add and remove whole
entries.

Below are descriptions of the standard library functions for write operations available on
mutable maps.

plus and minus operators

Map write operations

—

—

Adding and updating entries

217

To add a new key-value pair to a mutable map, use put(). When a new entry is put into a

LinkedHashMap (the default map implementation), it is added so that it comes last when

iterating the map. In sorted maps, the positions of new elements are de ned by the order of
their keys.

val numbersMap = mutableMapOf("one" to 1, "two" to 2)
numbersMap.put("three", 3)
println(numbersMap)

To add multiple entries at a time, use putAll(). Its argument can be a Map or a group of

Pair s: Iterable , Sequence , or Array .

val numbersMap = mutableMapOf("one" to 1, "two" to 2, "three" to 3)
numbersMap.putAll(setOf("four" to 4, "five" to 5))
println(numbersMap)

Both put() and putAll() overwrite the values if the given keys already exist in the map.

Thus, you can use them to update values of map entries.

val numbersMap = mutableMapOf("one" to 1, "two" to 2)
val previousValue = numbersMap.put("one", 11)
println("value associated with 'one', before: $previousValue, after:
${numbersMap["one"]}")
println(numbersMap)

You can also add new entries to maps using the shorthand operator form. There are two ways:

plusAssign (+=) operator.

the [] operator alias for put() .

val numbersMap = mutableMapOf("one" to 1, "two" to 2)
numbersMap["three"] = 3 // calls numbersMap.put("three", 3)
numbersMap += mapOf("four" to 4, "five" to 5)
println(numbersMap)

When called with the key present in the map, operators overwrite the values of the
corresponding entries.

To remove an entry from a mutable map, use the remove() function. When calling remove() ,

you can pass either a key or a whole key-value-pair. If you specify both the key and value, the
element with this key will be removed only if its value matches the second argument.

val numbersMap = mutableMapOf("one" to 1, "two" to 2, "three" to 3)
numbersMap.remove("one")
println(numbersMap)
numbersMap.remove("three", 4) //doesn't remove anything
println(numbersMap)

—

—

Removing entries

218

You can also remove entries from a mutable map by their keys or values. To do this, call
remove() on the map's keys or values providing the key or the value of an entry. When called

on values, remove() removes only the rst entry with the given value.

val numbersMap = mutableMapOf("one" to 1, "two" to 2, "three" to 3, "threeAgain" to 3)
numbersMap.keys.remove("one")
println(numbersMap)
numbersMap.values.remove(3)
println(numbersMap)

The minusAssign (-=) operator is also available for mutable maps.

val numbersMap = mutableMapOf("one" to 1, "two" to 2, "three" to 3)
numbersMap -= "two"
println(numbersMap)
numbersMap -= "five" //doesn't remove anything
println(numbersMap)

219

Multiplatform Programming

Multiplatform projects are an experimental feature in Kotlin 1.2 and 1.3. All of the
language and tooling features described in this document are subject to change in future
Kotlin versions.

One of the key capabilities of Kotlin's multiplatform code is a way for common code to depend
on platform-speci c declarations. In other languages, this can often be accomplished by building
a set of interfaces in the common code and implementing these interfaces in platform-speci c
modules. However, this approach is not ideal in cases when you have a library on one of the
platforms that implements the functionality you need, and you'd like to use the API of this library
directly without extra wrappers. Also, it requires common declarations to be expressed as
interfaces, which doesn't cover all possible cases.

As an alternative, Kotlin provides a mechanism of expected and actual declarations. With this
mechanism, a common module can de ne expected declarations, and a platform module can
provide actual declarations corresponding to the expected ones. To see how this works, let's look
at an example rst. This code is part of a common module:

package org.jetbrains.foo

expect class Foo(bar: String) {
 fun frob()
}

fun main() {
 Foo("Hello").frob()
}

And this is the corresponding JVM module:

package org.jetbrains.foo

actual class Foo actual constructor(val bar: String) {
 actual fun frob() {
 println("Frobbing the $bar")
 }
}

This illustrates several important points:

Platform-Speci c Declarations

220

An expected declaration in the common module and its actual counterparts always have
exactly the same fully quali ed name.

An expected declaration is marked with the expect keyword; the actual declaration is

marked with the actual keyword.

All actual declarations that match any part of an expected declaration need to be marked as
actual .

Expected declarations never contain any implementation code.

Note that expected declarations are not restricted to interfaces and interface members. In this
example, the expected class has a constructor and can be created directly from common code.
You can apply the expect modi er to other declarations as well, including top-level declarations

and annotations:

// Common
expect fun formatString(source: String, vararg args: Any): String

expect annotation class Test

// JVM
actual fun formatString(source: String, vararg args: Any) =
 String.format(source, *args)

actual typealias Test = org.junit.Test

The compiler ensures that every expected declaration has actual declarations in all platform
modules that implement the corresponding common module, and reports an error if any actual
declarations are missing. The IDE provides tools that help you create the missing actual
declarations.

If you have a platform-speci c library that you want to use in common code while providing your
own implementation for another platform, you can provide a typealias to an existing class as the
actual declaration:

expect class AtomicRef<V>(value: V) {
 fun get(): V
 fun set(value: V)
 fun getAndSet(value: V): V
 fun compareAndSet(expect: V, update: V): Boolean
}

actual typealias AtomicRef<V> = java.util.concurrent.atomic.AtomicReference<V>

—

—

—

—

221

Multiplatform projects are an experimental feature in Kotlin 1.2 and 1.3. All of the
language and tooling features described in this document are subject to change in future
Kotlin versions.

This document explains the structure of Kotlin multiplatform projects and describes how those
are con gured and built using Gradle.

Project Structure

Setting up a Multiplatform Project

Gradle Plugin

Setting up Targets

Supported platforms

Con guring compilations

Con guring Source Sets

Connecting source sets

Adding dependencies

Language settings

Default Project Layout

Running Tests

Publishing a Multiplatform Library

Java Support in JVM Targets

Android Support

Publishing Android libraries

Using Kotlin/Native Targets

Building nal native binaries

The layout of a Kotlin multiplatform project is constructed out of the following building blocks:

A target is a part of the build that is responsible for building, testing, and packaging a
complete piece of software for one of the platforms. Therefore, a multiplatform project
usually contains multiple targets.

Building Multiplatform Projects with Gradle

Table of Contents
—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

Project Structure

—

222

Building each target involves compiling Kotlin sources once or multiple times. In other words,
a target may have one or more compilations. For example, one compilation for production
sources, the other for tests.

The Kotlin sources are arranged into source sets. In addition to Kotlin source les and
resources, each source set may have its own dependencies. Source sets form a hierarchy that
is built with the "depends on" relation. A source set by itself is platform agnostic, but it may
contain platform-speci c code and dependencies if it's only compiled for a single platform.

Each compilation has a default source set, which is the place for sources and dependencies that
are speci c to that compilation. The default source set is also used for directing other source sets
to the compilation by the means of the "depends on" relation.

Here's an illustration of what a project targeting the JVM and JS looks like:

Here, the two targets, jvm and js , each compile the production and test sources, and some of

the sources are shared. This layout is achieved by just creating the two targets, with no additional
con guration for the compilations and source sets: those are created by default for these targets.

In the example above, the production sources for the JVM target are compiled by its main

compilation and therefore include the sources and dependencies from the source sets jvmMain

and commonMain (due to the depends on relation):

Here, the jvmMain source set provides plaform-speci c implementations for the expected API

in the shared commonMain sources. This is how the code is shared between the platforms in a

exible way with platform-speci c implementations where needed.

In further sections, these concepts are described in more detail along with the DSL to con gure
them in a project.

You can create a new multiplatform project in the IDE by selecting one of the multiplatform
project templates in the New Project dialog under the "Kotlin" section.

For example, if you choose "Kotlin (Multiplatform Library)", a library project is created that has
three targets, one for the JVM, one for JS, and one for the Native platform that you are using.
These are con gured in the build.gradle script in the following way:

—

—

Setting up a Multiplatform Project

223

plugins {
 id 'org.jetbrains.kotlin.multiplatform' version '1.3.50'
}

repositories {
 mavenCentral()
}

kotlin {
 jvm() // Creates a JVM target with the default name 'jvm'
 js() // JS target named 'js'
 mingwX64("mingw") // Windows (MinGW X64) target named 'mingw'

 sourceSets { /* ... */ }
}

plugins {
 kotlin("multiplatform") version "1.3.50"
}

repositories {
 mavenCentral()
}

kotlin {
 jvm() // Creates a JVM target with the default name 'jvm'
 js() // JS target named 'js'
 mingwX64("mingw") // Windows (MinGW X64) target named 'mingw'

 sourceSets { /* ... */ }
}

The three targets are created with the preset functions jvm() , js() , and mingwX64() that

provide some default con guration. There are presets for each of the supported platforms.

The source sets and their dependencies are then con gured as follows:

plugins { /* ... */ }

kotlin {
 /* Targets declarations omitted */

 sourceSets {
 commonMain {
 dependencies {
 implementation kotlin('stdlib-common')
 }
 }
 commonTest {
 dependencies {
 implementation kotlin('test-common')
 implementation kotlin('test-annotations-common')
 }
 }

 // Default source set for JVM-specific sources and dependencies.
 // Alternatively, jvmMain { ... } would work as well:
 jvm().compilations.main.defaultSourceSet {
 dependencies {
 implementation kotlin('stdlib-jdk8')

224

 implementation kotlin('stdlib-jdk8')
 }
 }
 // JVM-specific tests and their dependencies:
 jvm().compilations.test.defaultSourceSet {
 dependencies {
 implementation kotlin('test-junit')
 }
 }

 js().compilations.main.defaultSourceSet { /* ... */ }
 js().compilations.test.defaultSourceSet { /* ... */ }

 mingwX64('mingw').compilations.main.defaultSourceSet { /* ... */ }
 mingwX64('mingw').compilations.test.defaultSourceSet { /* ... */ }
 }
}

plugins { /* ... */ }

kotlin {
 /* Targets declarations omitted */

 sourceSets {
 val commonMain by getting {
 dependencies {
 implementation(kotlin("stdlib-common"))
 }
 }
 val commonTest by getting {
 dependencies {
 implementation(kotlin("test-common"))
 implementation(kotlin("test-annotations-common"))
 }
 }

 // Default source set for JVM-specific sources and dependencies:
 jvm().compilations["main"].defaultSourceSet {
 dependencies {
 implementation(kotlin("stdlib-jdk8"))
 }
 }
 // JVM-specific tests and their dependencies:
 jvm().compilations["test"].defaultSourceSet {
 dependencies {
 implementation(kotlin("test-junit"))
 }
 }

 js().compilations["main"].defaultSourceSet { /* ... */ }
 js().compilations["test"].defaultSourceSet { /* ... */ }

 mingwX64("mingw").compilations["main"].defaultSourceSet { /* ... */ }
 mingwX64("mingw").compilations["test"].defaultSourceSet { /* ... */ }
 }
}

225

These are the default source set names for the production and test sources for the targets
con gured above. The source sets commonMain and commonTest are included into production

and test compilations, respectively, of all targets. Note that the dependencies for common source
sets commonMain and commonTest are the common artifacts, and the platform libraries go to

the source sets of the speci c targets.

Kotlin Multiplatform projects require Gradle version 4.7 and above, older Gradle versions are not
supported.

To setup a multiplatform project from scratch in a Gradle project, rst apply the kotlin-

multiplatform plugin to the project by adding the following to the beginning of the

build.gradle le:

plugins {
 id 'org.jetbrains.kotlin.multiplatform' version '1.3.50'
}

plugins {
 kotlin("multiplatform") version "1.3.50"
}

This creates the kotlin extension at the top level. You can then access it in the build script for:

setting up the targets for multiple platforms (no targets are created by default);

con guring the source sets and their dependencies;

A target is a part of the build responsible for compiling, testing, and packaging a piece of software
aimed for one of the supported platforms.

All of the targets may share some of the sources and may have platform-speci c sources as well.

As the platforms are di erent, targets are built in di erent ways as well and have various
platform-speci c settings. The Gradle plugin bundles a number of presets for the supported
platforms.

To create a target, use one of the preset functions, which are named according to the target
platforms and optionally accept the target name and a con guring code block:

kotlin {
 jvm() // Create a JVM target with the default name 'jvm'
 js("nodeJs") // Create a JS target with a custom name 'nodeJs'

 linuxX64("linux") {
 /* Specify additional settings for the 'linux' target here */
 }
}

Gradle Plugin

—

—

Setting up Targets

226

The preset functions return an existing target if there is one. This can be used to con gure an
existing target:

kotlin {
 /* ... */

 // Configure the attributes of the 'jvm6' target:
 jvm("jvm6").attributes { /* ... */ }
}

Note that both the target platform and the name matter: if a target was created as
jvm('jvm6') , using jvm() will create a separate target (with the default name jvm). If the

preset function used to create the target under that name was di erent, an error is reported.

The targets created from presets are added to the kotlin.targets domain object collection,

which can be used to access them by their names or con gure all targets:

kotlin {
 jvm()
 js("nodeJs")

 println(targets.names) // Prints: [jvm, metadata, nodeJs]

 // Configure all targets, including those which will be added later:
 targets.all {
 compilations["main"].defaultSourceSet { /* ... */ }
 }
}

To create or access several targets from multiple presets dynamically, you can use the
targetFromPreset function which accepts a preset (those are contained in the

kotlin.presets domain object collection) and, optionally, a target name and a con guration

code block.

For example, to create a target for each of the Kotlin/Native supported platforms (see below), use
this code:

kotlin {

presets.withType(org.jetbrains.kotlin.gradle.plugin.mpp.KotlinNativeTargetPreset).each {
 targetFromPreset(it) {
 /* Configure each of the created targets */
 }
 }
}

227

import org.jetbrains.kotlin.gradle.plugin.mpp.KotlinNativeTargetPreset

/* ... */

kotlin {
 presets.withType<KotlinNativeTargetPreset>().forEach {
 targetFromPreset(it) {
 /* Configure each of the created targets */
 }
 }
}

There are target presets that one can apply using the preset functions, as shown above, for the
following target platforms:

jvm for Kotlin/JVM;

js for Kotlin/JS;

android for Android applications and libraries. Note that one of the Android Gradle plugins

should be applied before the target is created;

Kotlin/Native target presets (see the notes below):

androidNativeArm32 and androidNativeArm64 for Android NDK;

iosArm32 , iosArm64 , iosX64 for iOS;

linuxArm32Hfp , linuxMips32 , linuxMipsel32 , linuxX64 for Linux;

macosX64 for MacOS;

mingwX64 and mingwX86 for Windows;

wasm32 for WebAssembly.

Note that some of the Kotlin/Native targets require an appropriate host machine to build on.

Some targets may require additional con guration. For Android and iOS examples, see the
Multiplatform Project: iOS and Android tutorial.

Building a target requires compiling Kotlin once or multiple times. Each Kotlin compilation of a
target may serve a di erent purpose (e.g. production code, tests) and incorporate di erent
source sets. The compilations of a target may be accessed in the DSL, for example, to get the
tasks, con gure the Kotlin compiler options or get the dependency les and compilation outputs:

Supported platforms

—

—

—

—

—

—

—

—

—

—

Con guring compilations

228

kotlin {
 jvm {
 compilations.main.kotlinOptions {
 // Setup the Kotlin compiler options for the 'main' compilation:
 jvmTarget = "1.8"
 }

 compilations.main.compileKotlinTask // get the Kotlin task 'compileKotlinJvm'
 compilations.main.output // get the main compilation output
 compilations.test.runtimeDependencyFiles // get the test runtime classpath
 }

 // Configure all compilations of all targets:
 targets.all {
 compilations.all {
 kotlinOptions {
 allWarningsAsErrors = true
 }
 }
 }
}

kotlin {
 jvm {
 val main by compilations.getting {
 kotlinOptions {
 // Setup the Kotlin compiler options for the 'main' compilation:
 jvmTarget = "1.8"
 }

 compileKotlinTask // get the Kotlin task 'compileKotlinJvm'
 output // get the main compilation output
 }

 compilations["test"].runtimeDependencyFiles // get the test runtime classpath
 }

 // Configure all compilations of all targets:
 targets.all {
 compilations.all {
 kotlinOptions {
 allWarningsAsErrors = true
 }
 }
 }

229

}

Each compilation is accompanied by a default source set, which is created automatically and
should be used for sources and dependencies that are speci c to that compilation. The default
source set for a compilation foo of a target bar has the name barFoo . It can also be accessed

from a compilation using defaultSourceSet :

kotlin {
 jvm() // Create a JVM target with the default name 'jvm'

 sourceSets {
 // The default source set for the 'main` compilation of the 'jvm' target:
 jvmMain {
 /* ... */
 }
 }

 // Alternatively, access it from the target's compilation:
 jvm().compilations.main.defaultSourceSet {
 /* ... */
 }
}

kotlin {
 jvm() // Create a JVM target with the default name 'jvm'

 sourceSets {
 // The default source set for the 'main` compilation of the 'jvm' target:
 val jvmMain by getting {
 /* ... */
 }
 }

 // Alternatively, access it from the target's compilation:
 jvm().compilations["main"].defaultSourceSet {
 /* ... */
 }
}

To collect all source sets participating in a compilation, including those added via the depends-on
relation, one can use the property allKotlinSourceSets .

For some speci c use cases, creating a custom compilation may be required. This can be done
within the target's compilations domain object collection. Note that the dependencies need

to be set up manually for all custom compilations, and the usage of a custom compilation's
outputs is up to the build author. For example, consider a custom compilation for integration
tests of a jvm() target:

230

kotlin {
 jvm() {
 compilations.create('integrationTest') {
 defaultSourceSet {
 dependencies {
 def main = compilations.main
 // Compile against the main compilation's compile classpath and
outputs:
 implementation(main.compileDependencyFiles + main.output.classesDirs)
 implementation kotlin('test-junit')
 /* ... */
 }
 }

 // Create a test task to run the tests produced by this compilation:
 tasks.create('jvmIntegrationTest', Test) {
 // Run the tests with the classpath containing the compile dependencies
(including 'main'),
 // runtime dependencies, and the outputs of this compilation:
 classpath = compileDependencyFiles + runtimeDependencyFiles +
output.allOutputs

 // Run only the tests from this compilation's outputs:
 testClassesDirs = output.classesDirs
 }
 }
 }
}

kotlin {
 jvm() {
 compilations {
 val main by getting

 val integrationTest by compilations.creating {
 defaultSourceSet {
 dependencies {

231

 dependencies {
 // Compile against the main compilation's compile classpath and
outputs:
 implementation(main.compileDependencyFiles +
main.output.classesDirs)
 implementation(kotlin("test-junit"))
 /* ... */
 }
 }

 // Create a test task to run the tests produced by this compilation:
 tasks.create<Test>("integrationTest") {
 // Run the tests with the classpath containing the compile
dependencies (including 'main'),
 // runtime dependencies, and the outputs of this compilation:
 classpath = compileDependencyFiles + runtimeDependencyFiles +
output.allOutputs

 // Run only the tests from this compilation's outputs:
 testClassesDirs = output.classesDirs
 }
 }
 }
 }
}

Also note that the default source set of a custom compilation depends on neither commonMain

nor commonTest by default.

A Kotlin source set is a collection of Kotlin sources, along with their resources, dependencies, and
language settings, which may take part in Kotlin compilations of one or more targets.

A source set is not bound to be platform-speci c or "shared"; what it's allowed to contain
depends on its usage: a source set added to multiple compilations is limited to the common
language features and dependencies, while a source set that is only used by a single target can
have platform-speci c dependencies, and its code may use language features speci c to that
target's platform.

Some source sets are created and con gured by default: commonMain , commonTest , and the

default source sets for the compilations. See Default Project Layout.

The source sets are con gured within a sourceSets { ... } block of the kotlin { ... }

extension:

kotlin {
 sourceSets {
 foo { /* ... */ } // create or configure a source set by the name 'foo'
 bar { /* ... */ }
 }
}

Con guring Source Sets

232

kotlin {
 sourceSets {
 val foo by creating { /* ... */ } // create a new source set by the name 'foo'
 val bar by getting { /* ... */ } // configure an existing source set by the name
'bar'
 }
}

Note: creating a source set does not link it to any target. Some source sets are
prede ned and thus compiled by default. However, custom source sets always need to
be explicitly directed to the compilations. See: Connecting source sets.

The source set names are case-sensitive. When referring to a default source set by its name,
make sure the name pre x matches a target's name, for example, a source set iosX64Main for

a target iosX64 .

A source set by itself is platform-agnostic, but it can be considered platform-speci c if it is only
compiled for a single platform. A source set can, therefore, contain either common code shared
between the platforms or platform-speci c code.

Each source set has a default source directory for Kotlin sources: src/<source set

name>/kotlin . To add Kotlin source directories and resources to a source set, use its kotlin

and resources SourceDirectorySet s:

kotlin {
 sourceSets {
 commonMain {
 kotlin.srcDir('src')
 resources.srcDir('res')
 }
 }
}

kotlin {
 sourceSets {
 val commonMain by getting {
 kotlin.srcDir("src")
 resources.srcDir("res")
 }
 }
}

Kotlin source sets may be connected with the 'depends on' relation, so that if a source set foo

depends on a source set bar then:

whenever foo is compiled for a certain target, bar takes part in that compilation as well and

is also compiled into the same target binary form, such as JVM class les or JS code;

Connecting source sets

—

233

sources of foo 'see' the declarations of bar , including the internal ones, and the

dependencies of bar , even those speci ed as implementation dependencies;

foo may contain platform-speci c implementations for the expected declarations of bar ;

the resources of bar are always processed and copied along with the resources of foo ;

the language settings of foo and bar should be consistent;

Circular source set dependencies are prohibited.

The source sets DSL can be used to de ne these connections between the source sets:

kotlin {
 sourceSets {
 commonMain { /* ... */ }
 allJvm {
 dependsOn commonMain
 /* ... */
 }
 }
}

kotlin {
 sourceSets {
 val commonMain by getting { /* ... */ }
 val allJvm by creating {
 dependsOn(commonMain)
 /* ... */
 }
 }
}

Custom source sets created in addition to the default ones should be explicitly included into the
dependencies hierarchy to be able to use declarations from other source sets and, most
importantly, to take part in compilations. Most often, they need a dependsOn(commonMain) or

dependsOn(commonTest) statement, and some of the default platform-speci c source sets

should depend on the custom ones, directly or indirectly:

—

—

—

—

234

kotlin {
 mingwX64()
 linuxX64()

 sourceSets {
 // custom source set with tests for the two targets
 desktopTest {
 dependsOn commonTest
 /* ... */
 }
 // Make the 'windows' default test source set for depend on 'desktopTest'
 mingwX64().compilations.test.defaultSourceSet {
 dependsOn desktopTest
 /* ... */
 }
 // And do the same for the other target:
 linuxX64().compilations.test.defaultSourceSet {
 dependsOn desktopTest
 /* ... */
 }
 }
}

kotlin {
 mingwX64()
 linuxX64()

 sourceSets {
 // custom source set with tests for the two targets
 val desktopTest by creating {
 dependsOn(getByName("commonTest"))
 /* ... */
 }
 // Make the 'windows' default test source set for depend on 'desktopTest'
 mingwX64().compilations["test"].defaultSourceSet {
 dependsOn(desktopTest)
 /* ... */
 }
 // And do the same for the other target:
 linuxX64().compilations["test"].defaultSourceSet {
 dependsOn(desktopTest)
 /* ... */
 }
 }
}

To add a dependency to a source set, use a dependencies { ... } block of the source sets

DSL. Four kinds of dependencies are supported:

api dependencies are used both during compilation and at runtime and are exported to

library consumers. If any types from a dependency are used in the public API of the current
module, then it should be an api dependency;

Adding Dependencies

—

235

implementation dependencies are used during compilation and at runtime for the current

module, but are not exposed for compilation of other modules depending on the one with
the implementation dependency. The implementation dependency kind should be used

for dependencies needed for the internal logic of a module. If a module is an endpoint
application which is not published, it may use implementation dependencies instead of

api ones.

compileOnly dependencies are only used for compilation of the current module and are

available neither at runtime nor during compilation of other modules. These dependencies
should be used for APIs which have a third-party implementation available at runtime.

runtimeOnly dependencies are available at runtime but are not visible during compilation

of any module.

Dependencies are speci ed per source set as follows:

kotlin {
 sourceSets {
 commonMain {
 dependencies {
 api 'com.example:foo-metadata:1.0'
 }
 }
 jvm6Main {
 dependencies {
 api 'com.example:foo-jvm6:1.0'
 }
 }
 }
}

kotlin {
 sourceSets {
 val commonMain by getting {
 dependencies {
 api("com.example:foo-metadata:1.0")
 }
 }
 val jvm6Main by getting {
 dependencies {
 api("com.example:foo-jvm6:1.0")
 }
 }
 }
}

Note that for the IDE to correctly analyze the dependencies of the common sources, the common
source sets need to have corresponding dependencies on the Kotlin metadata packages in
addition to the platform-speci c artifact dependencies of the platform-speci c source sets.
Usually, an artifact with a su x -common (as in kotlin-stdlib-common) or -metadata is

required when using a published library (unless it is published with Gradle metadata, as
described below).

—

—

—

236

However, a project('...') dependency on another multiplatform project is resolved to an

appropriate target automatically. It is enough to specify a single project('...') dependency

in a source set's dependencies, and the compilations that include the source set will receive a
corresponding platform-speci c artifact of that project, given that it has a compatible target:

kotlin {
 sourceSets {
 commonMain {
 dependencies {
 // All of the compilations that include source set 'commonMain'
 // will get this dependency resolved to a compatible target, if any:
 api project(':foo-lib')
 }
 }
 }
}

kotlin {
 sourceSets {
 val commonMain by getting {
 dependencies {
 // All of the compilations that include source set 'commonMain'
 // will get this dependency resolved to a compatible target, if any:
 api(project(":foo-lib"))
 }
 }
 }
}

Likewise, if a multiplatform library is published in the experimental Gradle metadata publishing
mode and the project is set up to consume the metadata as well, then it is enough to specify a
dependency only once, for the common source set. Otherwise, each platform-speci c source set
should be provided with a corresponding platform module of the library, in addition to the
common module, as shown above.

An alternative way to specify the dependencies is to use the Gradle built-in DSL at the top level
with the con guration names following the pattern <sourceSetName><DependencyKind> :

dependencies {
 commonMainApi 'com.example:foo-common:1.0'
 jvm6MainApi 'com.example:foo-jvm6:1.0'
}

dependencies {
 "commonMainApi"("com.example:foo-common:1.0")
 "jvm6MainApi"("com.example:foo-jvm6:1.0")
}

Some of the Gradle built-in dependencies, like gradleApi() , localGroovy() , or

gradleTestKit() are not available in the source sets dependency DSL. You can, however, add

them within the top-level dependency block, as shown above.

237

A dependency on a Kotlin module like kotlin-stdlib or kotlin-reflect may be added

with the notation kotlin("stdlib") , which is a shorthand for

"org.jetbrains.kotlin:kotlin-stdlib" .

The language settings for a source set can be speci ed as follows:

kotlin {
 sourceSets {
 commonMain {
 languageSettings {
 languageVersion = '1.3' // possible values: '1.0', '1.1', '1.2', '1.3'
 apiVersion = '1.3' // possible values: '1.0', '1.1', '1.2', '1.3'
 enableLanguageFeature('InlineClasses') // language feature name
 useExperimentalAnnotation('kotlin.ExperimentalUnsignedTypes') //
annotation FQ-name
 progressiveMode = true // false by default
 }
 }
 }
}

kotlin {
 sourceSets {
 val commonMain by getting {
 languageSettings.apply {
 languageVersion = "1.3" // possible values: '1.0', '1.1', '1.2', '1.3'
 apiVersion = "1.3" // possible values: '1.0', '1.1', '1.2', '1.3'
 enableLanguageFeature("InlineClasses") // language feature name
 useExperimentalAnnotation("kotlin.ExperimentalUnsignedTypes") //
annotation FQ-name
 progressiveMode = true // false by default
 }
 }
 }
}

It is possible to con gure the language settings of all source sets at once:

kotlin.sourceSets.all {
 languageSettings.progressiveMode = true
}

Language settings of a source set a ect how the sources are analyzed in the IDE. Due to the
current limitations, in a Gradle build, only the language settings of the compilation's default
source set are used and are applied to all of the sources participating in the compilation.

The language settings are checked for consistency between source sets depending on each other.
Namely, if foo depends on bar :

foo should set languageVersion that is greater than or equal to that of bar ;

foo should enable all unstable language features that bar enables (there's no such

Language settings

—

—

238

requirement for bug x features);

foo should use all experimental annotations that bar uses;

apiVersion , bug x language features, and progressiveMode can be set arbitrarily;

By default, each project contains two source sets, commonMain and commonTest , where one

can place all the code that should be shared between all of the target platforms. These source
sets are added to each production and test compilation, respectively.

Then, once a target is added, default compilations are created for it:

main and test compilations for JVM, JS, and Native targets;

a compilation per Android build variant, for Android targets;

For each compilation, there is a default source set under the name composed as <targetName>

<CompilationName> . This default source set participates in the compilation, and thus it should

be used for the platform-speci c code and dependencies, and for adding other source sets to the
compilation by the means of 'depends on'. For example, a project with targets jvm6 (JVM) and

nodeJs (JS) will have source sets: commonMain , commonTest , jvm6Main , jvm6Test ,

nodeJsMain , nodeJsTest .

Numerous use cases are covered by just the default source sets and don't require custom source
sets.

Each source set by default has its Kotlin sources under src/<sourceSetName>/kotlin

directory and the resources under src/<sourceSetName>/resources .

In Android projects, additional Kotlin source sets are created for each Android source set. If the
Android target has a name foo , the Android source set bar gets a Kotlin source set counterpart

fooBar . The Kotlin compilations, however, are able to consume Kotlin sources from all of the

directories src/bar/java , src/bar/kotlin , and src/fooBar/kotlin . Java sources are

only read from the rst of these directories.

Running tests in a Gradle build is currently supported by default for JVM, Android, Linux,
Windows and macOS; JS and other Kotlin/Native targets need to be manually con gured to run
the tests with an appropriate environment, an emulator or a test framework.

A test task is created under the name <targetName>Test for each target that is suitable for

testing. Run the check task to run the tests for all targets.

As the commonTest default source set is added to all test compilations, tests and test tools that

are needed on all target platforms may be placed there.

—

—

Default Project Layout

—

—

Running Tests

239

https://developer.android.com/studio/build/build-variants
https://developer.android.com/studio/build/#sourcesets

The kotlin.test API is availble for multiplatform tests. Add the kotlin-test-common and

kotlin-test-annotations-common dependencies to commonTest to use the assertion

functions like kotlin.test.assertTrue(...)

and @Test / @Ignore / @BeforeTest / @AfterTest annotations in the common tests.

For JVM targets, use kotlin-test-junit or kotlin-test-testng for the corresponding

asserter implementation and annotations mapping.

For Kotlin/JS targets, add kotlin-test-js as a test dependency. At this point, test tasks for

Kotlin/JS are created but do not run tests by default; they should be manually con gured to run
the tests with a JavaScript test framework.

Kotlin/Native targets do not require additional test dependencies, and the kotlin.test API

implementations are built-in.

The set of target platforms is de ned by a multiplatform library author, and they should
provide all of the platform-speci c implementations for the library. Adding new targets
for a multiplatform library at the consumer's side is not supported.

A library built from a multiplatform project may be published to a Maven repository with the
maven-publish Gradle plugin, which can be applied as follows:

plugins {
 /* ... */
 id("maven-publish")
}

A library also needs group and version to be set in the project:

plugins { /* ... */ }

group = "com.example.my.library"
version = "0.0.1"

Compared to publishing a plain Kotlin/JVM or Java project, there is no need to create publications
manually via the publishing { ... } DSL. The publications are automatically created for

each of the targets that can be built on the current host, except for the Android target, which
needs an additional step to con gure publishing, see Publishing Android libraries.

The repositories where the library will be published are added via the repositories block in

the publishing { ... } DSL, as explained in Maven Publish Plugin. Repositories.

The default artifact IDs follow the pattern <projectName>-<targetNameToLowerCase> , for

example sample-lib-nodejs for a target named nodeJs in a project sample-lib .

Publishing a Multiplatform Library

240

https://kotlinlang.org/api/latest/kotlin.test/index.html
https://docs.gradle.org/current/userguide/publishing_maven.html
https://docs.gradle.org/current/userguide/publishing_maven.html#publishing_maven:repositories

By default, a sources JAR is added to each publication in addition to its main artifact. The sources
JAR contains the sources used by the main compilation of the target. If you also need to publish

a documentation artifact (like a Javadoc JAR), you need to con gure its build manually and add it
as an artifact to the relevant publications, as shown below.

Also, an additional publication under the name metadata is added by default which contains

serialized Kotlin declarations and is used by the IDE to analyze multiplatform libraries. The
default artifact ID of this publication is formed as <projectName>-metadata .

The Maven coordinates can be altered and additional artifact les may be added to the
publications within the targets { ... } block or the publishing { ... } DSL:

kotlin {
 jvm('jvm6') {
 mavenPublication { // Setup the publication for the target 'jvm6'
 // The default artifactId was 'foo-jvm6', change it:
 artifactId = 'foo-jvm'
 // Add a docs JAR artifact (it should be a custom task):
 artifact(jvmDocsJar)
 }
 }
}

// Alternatively, configure the publications with the `publishing { ... }` DSL:
publishing {
 publications {
 jvm6 { /* Setup the publication for target 'jvm6' */ }
 metadata { /* Setup the publication for Kotlin metadata */ }
 }
}

kotlin {
 jvm("jvm6") {
 mavenPublication { // Setup the publication for the target 'jvm6'
 // The default artifactId was 'foo-jvm6', change it:
 artifactId = "foo-jvm"
 // Add a docs JAR artifact (it should be a custom task):
 artifact(jvmDocsJar)
 }
 }
}

// Alternatively, configure the publications with the `publishing { ... }` DSL:
publishing {
 publications.withType<MavenPublication>().apply {
 val jvm6 by getting { /* Setup the publication for target 'jvm6' */ }
 val metadata by getting { /* Setup the publication for Kotlin metadata */ }
 }
}

241

As assembling Kotlin/Native artifacts requires several builds to run on di erent host platforms,
publishing a multiplatform library that includes Kotlin/Native targets needs to be done with that
same set of host machines. To avoid duplicate publications of modules that can be built on more
than one of the platforms (like JVM, JS, Kotlin metadata, WebAssembly), the publishing tasks for
these modules may be con gured to run conditionally.

This simpli ed example ensures that the JVM, JS, and Kotlin metadata publications are only
uploaded when -PisLinux=true is passed to the build in the command line:

kotlin {
 jvm()
 js()
 mingwX64()
 linuxX64()

 // Note that the Kotlin metadata is here, too.
 // The mingwx64() target is automatically skipped as incompatible in Linux builds.
 configure([targets["metadata"], jvm(), js()]) {
 mavenPublication { targetPublication ->
 tasks.withType(AbstractPublishToMaven)
 .matching { it.publication == targetPublication }
 .all { onlyIf { findProperty("isLinux") == "true" } }
 }
 }
}

kotlin {
 jvm()
 js()
 mingwX64()
 linuxX64()

 // Note that the Kotlin metadata is here, too.
 // The mingwx64() target is automatically skipped as incompatible in Linux builds.
 configure(listOf(metadata(), jvm(), js())) {
 mavenPublication {
 val targetPublication = this@mavenPublication
 tasks.withType<AbstractPublishToMaven>()
 .matching { it.publication == targetPublication }
 .all { onlyIf { findProperty("isLinux") == "true" } }
 }
 }
}

Gradle module metadata provides rich publishing and dependency resolution features that are
used in Kotlin multiplatform projects to simplify dependencies con guration for build authors. In
particular, the publications of a multiplatform library may include a special 'root' module that
stands for the whole library and is automatically resolved to the appropriate platform-speci c
artifacts when added as a dependency, as described below.

Experimental metadata publishing mode

242

In Gradle 5.3 and above, the module metadata is always used during dependency resolution, but
publications don't include any module metadata by default. To enable module metadata
publishing, add enableFeaturePreview("GRADLE_METADATA") to the root project's

settings.gradle le. With older Gradle versions, this is also required for module metadata

consumption.

Note that the module metadata published by Gradle 5.3 and above cannot be read by
Gradle versions older than 5.3.

With Gradle metadata enabled, an additional 'root' publication named kotlinMultiplatform

is added to the project's publications. The default artifact ID of this publication matches the
project name without any additional su x. To con gure this publication, access it via the
publishing { ... } DSL of the maven-publish plugin:

kotlin { /* ... */ }

publishing {
 publications {
 kotlinMultiplatform {
 artifactId = "foo"
 }
 }
}

kotlin { /* ... */ }

publishing {
 publications {
 val kotlinMultiplatform by getting {
 artifactId = "foo"
 }
 }
}

This publication does not include any artifacts and only references the other publications as its
variants. However, it may need the sources and documentation artifacts if that is required by the
repository. In that case, add those artifacts by using artifact(...) in the publication's scope,

which is accessed as shown above.

If a library has a 'root' publication, the consumer may specify a single dependency on the library
as a whole in a common source set, and a corresponding platform-speci c variant will be chosen,
if available, for each of the compilations that include this dependency. Consider a sample-lib

library built for the JVM and JS and published with a 'root' publication:

243

https://docs.gradle.org/current/javadoc/org/gradle/api/publish/maven/MavenPublication.html#artifact-java.lang.Object-

kotlin {
 jvm('jvm6')
 js('nodeJs')

 sourceSets {
 commonMain {
 dependencies {
 // This single dependency is resolved to the appropriate target modules,
 // for example, `sample-lib-jvm6` for JVM, `sample-lib-js` for JS:
 api 'com.example:sample-lib:1.0'
 }
 }
 }
}

kotlin {
 jvm("jvm6")
 js("nodeJs")

 sourceSets {
 val commonMain by getting {
 dependencies {
 // This single dependency is resolved to the appropriate target modules,
 // for example, `sample-lib-jvm6` for JVM, `sample-lib-js` for JS:
 api("com.example:sample-lib:1.0")
 }
 }
 }
}

This requires that the consumer's Gradle build can read Gradle module metadata, either using
Gradle 5.3+ or explicitly enabling it by enableFeaturePreview("GRADLE_METADATA") in

settings.gradle .

It is possible to have more than one target for a single platform in a multiplatform library. For
example, these targets may provide the same API and di er in the libraries they cooperate with
at runtime, like testing frameworks or logging solutions.

However, dependencies on such a multiplatform library may be ambiguous and may thus fail to
resolve because there is not enough information to decide which of the targets to choose.

The solution is to mark the targets with a custom attribute, which is taken into account by Gradle
during dependency resolution. This, however, must be done on both the library author and the
consumer sides, and it's the library author's responsibility to communicate the attribute and its
possible values to the consumers.

Adding attributes is done symmetrically, to both the library and the consumer projects. For
example, consider a testing library that supports both JUnit and TestNG in the two targets. The
library author needs to add an attribute to both targets as follows:

Disambiguating targets

244

def testFrameworkAttribute = Attribute.of('com.example.testFramework', String)

kotlin {
 jvm('junit') {
 attributes.attribute(testFrameworkAttribute, 'junit')
 }
 jvm('testng') {
 attributes.attribute(testFrameworkAttribute, 'testng')
 }
}

val testFrameworkAttribute = Attribute.of("com.example.testFramework",
String::class.java)

kotlin {
 jvm("junit") {
 attributes.attribute(testFrameworkAttribute, "junit")
 }
 jvm("testng") {
 attributes.attribute(testFrameworkAttribute, "testng")
 }
}

The consumer may only need to add the attribute to a single target where the ambiguity arises.

If the same kind of ambiguity arises when a dependency is added to a custom con guration
rather than one of the con gurations created by the plugin, you can add the attributes to the
con guration in the same way:

def testFrameworkAttribute = Attribute.of('com.example.testFramework', String)

configurations {
 myConfiguration {
 attributes.attribute(testFrameworkAttribute, 'junit')
 }
}

val testFrameworkAttribute = Attribute.of("com.example.testFramework",
String::class.java)

configurations {
 val myConfiguration by creating {
 attributes.attribute(testFrameworkAttribute, "junit")
 }
}

This feature is available since Kotlin 1.3.40.

By default, a JVM target ignores Java sources and only compiles Kotlin source les.
To include Java sources in the compilations of a JVM target, or to apply a Gradle plugin that
requires the java plugin to work, you need to explicitly enable Java support for the target:

Java Support in JVM Targets

245

kotlin {
 jvm {
 withJava()
 }
}

This will apply the Gradle java plugin and con gure the target to cooperate with it. Note that

just applying the Java plugin without specifying withJava() in a JVM target will have no e ect

on the target.

The le system locations for the Java sources are di erent from the java plugin's defaults. The

Java source les need to be placed in the sibling directories of the Kotlin source roots. For
example, if the JVM target has the default name jvm , the paths are:

src
├── jvmMain
│ ├── java // production Java sources
│ ├── kotlin
│ └── resources
├── jvmTest
│ ├── java // test Java sources
│ ├── kotlin
… └── resources

The common source sets cannot include Java sources.

Due to the current limitations, some tasks con gured by the Java plugin are disabled, and the
corresponding tasks added by the Kotlin plugin are used instead:

jar is disabled in favor of the target's JAR task (e.g. jvmJar)

test is disabled, and the target's test task is used (e.g. jvmTest)

*ProcessResources tasks are disabled, and the resources are processed by the equivalent

tasks of the compilations

The publication of this target is handled by the Kotlin plugin and doesn't require the steps that
are speci c to the Java plugin, such as manually creating a publication and con guring it as
from(components.java) .

Kotlin Multiplatform projects support the Android platform by providing the android preset.

Creating an Android target requires that one of the Android Gradle plugins, like
com.android.application or com.android.library is manually applied to the project.

Only one Android target may be created per Gradle subproject:

—

—

—

Android Support

246

plugins {
 id("com.android.library")
 id("org.jetbrains.kotlin.multiplatform").version("1.3.50")
}

android { /* ... */ }

kotlin {
 android { // Create the Android target
 // Provide additional configuration if necessary
 }
}

plugins {
 id("com.android.library")
 kotlin("multiplatform").version("1.3.50")
}

android { /* ... */ }

kotlin {
 android { // Create the Android target
 // Provide additional configuration if necessary
 }
}

An Android target's compilations created by default are tied to Android build variants: for each
build variant, a Kotlin compilation is created under the same name.

Then, for each Android source set compiled by the variants, a Kotlin source set is created under
that source set name prepended by the target name, like Kotlin source set androidDebug for

an Android source set debug and the Kotlin target named android . These Kotlin source sets

are added to the variants compilations accordingly.

The default source set commonMain is added to each production (application or library) variant's

compilation. The commonTest source set is, similarly, added to the compilations of unit test and

instrumented test variants.

Annotation processing with kapt is also supported but, due to the current limitations, it requires
that the Android target is created before the kapt dependencies are con gured, which needs to

be done in a top-level dependencies { ... } block rather than within Kotlin source sets

dependencies.

// ...

kotlin {
 android { /* ... */ }
}

dependencies {
 kapt("com.my.annotation:processor:1.0.0")
}

247

https://developer.android.com/studio/build/build-variants
https://developer.android.com/studio/build/build-variants#sourcesets

To publish an Android library as a part of a multiplatform library, one needs to setup publishing
for the library and provide additional con guration for the Android library target.

By default, no artifacts of an Android library are published. To publish artifacts produced by a set
of Android variants, specify the variant names in the Android target block as follows:

kotlin {
 android {
 publishLibraryVariants("release", "debug")
 }
}

The example above will work for Android libraries with no product avors. For a library with
product avors, the variant names also contain the avors, like fooBarDebug or

fooBazRelease .

Note that if a library consumer de nes variants that are missing in the library, they need to
provide matching fallbacks. For example, if a library does not have or does not publish a
staging build type, it will be necessary to provide a fallback for the consumers who have such

a build type, specifying at least one of the build types that the library publishes:

android {
 buildTypes {
 staging {
 // ...
 matchingFallbacks = ['release', 'debug']
 }
 }
}

android {
 buildTypes {
 val staging by creating {
 // ...
 matchingFallbacks = listOf("release", "debug")
 }
 }
}

Similarly, a library consumer may need to provide matching fallbacks for custom product avors
if some are missing in the library publications.

There is an option to publish variants grouped by the product avor, so that the outputs of the
di erent build types are placed in a single module, with the build type becoming a classi er for
the artifacts (the release build type is still published with no classi er). This mode is disabled by
default and can be enabled as follows:

Publishing Android libraries

248

https://developer.android.com/studio/build/build-variants
https://developer.android.com/studio/build/dependencies#resolve_matching_errors

kotlin {
 android {
 publishLibraryVariantsGroupedByFlavor = true
 }
}

It is not recommended to publish variants grouped by the product avor in case they have
di erent dependencies, as those will be merged into one dependencies list.

It is important to note that some of the Kotlin/Native targets may only be built with an
appropriate host machine:

Linux MIPS targets (linuxMips32 and linuxMipsel32) require a Linux host. Other Linux

targets can be built on any supported host;

Windows targets require a Windows host;

macOS and iOS targets can only be built on a macOS host;

The 64-bit Android Native target require a Linux or macOS host. The 32-bit Android Native
target can be built on any supported host.

A target that is not supported by the current host is ignored during build and therefore not
published. A library author may want to set up builds and publishing from di erent hosts as
required by the library target platforms.

By default, a Kotlin/Native target is compiled down to a *.klib library artifact, which can be

consumed by Kotlin/Native itself as a dependency but cannot be executed or used as a native
library. To declare nal native binaries like executables or shared libraries a binaries property

of a native target is used. This property represents a collection of native binaries built for this
target in addition to the default *.klib artifact and provides a set of methods for declaring and

con guring them.

Note that the kotlin-multiplaform plugin doesn't create any production binaries by default.

The only binary available by default is a debug executable allowing one to run tests from the
test compilation.

A set of factory methods is used for declaring elements of the binaries collection. These

methods allow one to specify what kinds of binaries are to be created and con gure them. The
following binary kinds are supported (note that not all the kinds are available for all native
platforms):

Using Kotlin/Native Targets

—

—

—

—

Building nal native binaries

Declaring binaries

249

Factory method Binary kind Available for
executable a product executable all native targets
test a test executable all native targets
sharedLib a shared native library all native targets except wasm32
staticLib a static native library all native targets except wasm32
framework an Objective-C framework macOS and iOS targets only

Each factory method exists in several versions. Consider them by example of the executable

method. All the same versions are available for all other factory methods.

The simplest version doesn't require any additional parameters and creates one binary for each
build type. Currently there a two build types available: DEBUG (produces a not optimized binary

with a debug information) and RELEASE (produces an optimized binary without debug

information). Consequently the following snippet creates two executable binaries: debug and
release.

kotlin {
 linuxX64 { // Use your target instead.
 binaries {
 executable {
 // Binary configuration.
 }
 }
 }
}

A lambda expression accepted by the executable method in the example above is applied to

each binary created and allows one to con gure the binary (see the corresponding section). Note
that this lambda can be dropped if there is no need for additional con guration:

binaries {
 executable()
}

It is possible to specify which build types will be used to create binaries and which won't. In the
following example only debug executable is created.

binaries {
 executable([DEBUG]) {
 // Binary configuration.
 }
}

binaries {
 executable(listOf(DEBUG)) {
 // Binary configuration.
 }
}

Finally the last factory method version allows customizing the binary name.

250

binaries {
 executable('foo', [DEBUG]) {
 // Binary configuration.
 }

 // It's possible to drop the list of build types (all the available build types will
be used in this case).
 executable('bar') {
 // Binary configuration.
 }
}

binaries {
 executable("foo", listOf(DEBUG)) {
 // Binary configuration.
 }

 // It's possible to drop the list of build types (all the available build types will
be used in this case).
 executable("bar") {
 // Binary configuration.
 }
}

The rst argument in this example allows one to set a name pre x for the created binaries which
is used to access them in the buildscript (see the "Accessing binaries" section). Also this pre x is
used as a default name for the binary le. For example on Windows the sample above produces

les foo.exe and bar.exe .

The binaries DSL allows not only creating binaries but also accessing already created ones to
con gure them or get their properties (e.g. path to an output le). The binaries collection

implements the DomainObjectSet interface and provides methods like all or matching

allowing con guring groups of elements.

Also it's possible to get a certain element of the collection. There are two ways to do this. First,
each binary has a unique name. This name is based on the name pre x (if it's speci ed), build
type and binary kind according to the following pattern: <optional-name-prefix><build-

type><binary-kind> , e.g. releaseFramework or testDebugExecutable .

Note: static and shared libraries has su xes static and shared respectively, e.g.

fooDebugStatic or barReleaseShared

This name can be used to access the binary:

Accessing binaries

251

https://docs.gradle.org/current/javadoc/org/gradle/api/DomainObjectSet.html

// Fails if there is no such a binary.
binaries['fooDebugExecutable']
binaries.fooDebugExecutable
binaries.getByName('fooDebugExecutable')

 // Returns null if there is no such a binary.
binaries.findByName('fooDebugExecutable')

// Fails if there is no such a binary.
binaries["fooDebugExecutable"]
binaries.getByName("fooDebugExecutable")

 // Returns null if there is no such a binary.
binaries.findByName("fooDebugExecutable")

The second way is using typed getters. These getters allow one to access a binary of a certain type
by its name pre x and build type.

// Fails if there is no such a binary.
binaries.getExecutable('foo', DEBUG)
binaries.getExecutable(DEBUG) // Skip the first argument if the name prefix
isn't set.
binaries.getExecutable('bar', 'DEBUG') // You also can use a string for build type.

// Similar getters are available for other binary kinds:
// getFramework, getStaticLib and getSharedLib.

// Returns null if there is no such a binary.
binaries.findExecutable('foo', DEBUG)

// Similar getters are available for other binary kinds:
// findFramework, findStaticLib and findSharedLib.

// Fails if there is no such a binary.
binaries.getExecutable("foo", DEBUG)
binaries.getExecutable(DEBUG) // Skip the first argument if the name prefix
isn't set.
binaries.getExecutable("bar", "DEBUG") // You also can use a string for build type.

// Similar getters are available for other binary kinds:
// getFramework, getStaticLib and getSharedLib.

// Returns null if there is no such a binary.
binaries.findExecutable("foo", DEBUG)

// Similar getters are available for other binary kinds:
// findFramework, findStaticLib and findSharedLib.

252

Note: Before 1.3.40, both test and product executables were represented by the same
binary type. Thus to access the default test binary created by the plugin, the following
line was used:

binaries.getExecutable("test", "DEBUG")

Since 1.3.40, test executables are represented by a separate binary type and have their
own getter. To access the default test binary, use:

binaries.getTest("DEBUG")

Binaries have a set of properties allowing one to con gure them. The following options are
available:

Compilation. Each binary is built on basis of some compilation available in the same target.
The default value of this parameter depends on the binary type: Test binaries are based on

the test compilation while other binaries - on the main compilation.

Linker options. Options passed to a system linker during binary building. One can use this
setting to link against some native library.

Output le name. By default the output le name is based on binary name pre x or, if the
name pre x isn't speci ed, on a project name. But it's possible to con gure the output le
name independently using the baseName property. Note that nal le name will be formed

by adding system-dependent pre x and post x to this base name. E.g. a libfoo.so is

produced for a Linux shared library with the base name foo .

Entry point (for executable binaries only). By default the entry point for Kotlin/Native
programs is a main function located in the root package. This setting allows one to change

this default and use a custom function as an entry point. For example it can be used to move
the main function from the root package.

Access to the output le.

Access to a link task.

Access to a run task (for executable binaries only). The kotlin-multiplatform plugin

creates run tasks for all executable binaries of host platforms (Windows, Linux and macOS).
Names of such tasks are based on binary names, e.g. runReleaseExecutable<target-

name> or runFooDebugExecutable<target-name> . A run task can be accessed using the

runTask property of an executable binary.

Framework type (only for Objective-C frameworks). By default a framework built by
Kotlin/Native contains a dynamic library. But it's possible to replace it with a static library.

The following example shows how to use these settings.

binaries {

Con guring binaries

—

—

—

—

—

—

—

—

253

binaries {
 executable('my_executable', [RELEASE]) {
 // Build a binary on the basis of the test compilation.
 compilation = compilations.test

 // Custom command line options for the linker.
 linkerOpts = ['-L/lib/search/path', '-L/another/search/path', '-lmylib']

 // Base name for the output file.
 baseName = 'foo'

 // Custom entry point function.
 entryPoint = 'org.example.main'

 // Accessing the output file.
 println("Executable path: ${outputFile.absolutePath}")

 // Accessing the link task.
 linkTask.dependsOn(additionalPreprocessingTask)

 // Accessing the run task.
 // Note that the runTask is null for non-host platforms.
 runTask?.dependsOn(prepareForRun)
 }

 framework('my_framework' [RELEASE]) {
 // Include a static library instead of a dynamic one into the framework.
 isStatic = true
 }
}

binaries {
 executable("my_executable", listOf(RELEASE)) {
 // Build a binary on the basis of the test compilation.
 compilation = compilations["test"]

 // Custom command line options for the linker.
 linkerOpts = mutableListOf("-L/lib/search/path", "-L/another/search/path", "-
lmylib")

 // Base name for the output file.
 baseName = "foo"

 // Custom entry point function.
 entryPoint = "org.example.main"

 // Accessing the output file.
 println("Executable path: ${outputFile.absolutePath}")

 // Accessing the link task.
 linkTask.dependsOn(additionalPreprocessingTask)

 // Accessing the run task.
 // Note that the runTask is null for non-host platforms.
 runTask?.dependsOn(prepareForRun)
 }

 framework("my_framework" listOf(RELEASE)) {
 // Include a static library instead of a dynamic one into the framework.
 isStatic = true
 }

254

}

When building an Objective-C framework, it is often necessary to pack not just the classes of the
current project, but also the classes of some of its dependencies. The Binaries DSL allows one to
specify which dependencies will be exported in the framework using the export method. Note

that only API dependencies of a corresponding source set can be exported.

kotlin {
 sourceSets {
 macosMain.dependencies {
 // Will be exported in the framework.
 api project(':dependency')
 api 'org.example:exported-library:1.0'

 // Will not be exported in the framework.
 api 'org.example:not-exported-library:1.0'
 }
 }

 macosX64("macos").binaries {
 framework {
 export project(':dependency')
 export 'org.example:exported-library:1.0'
 }
 }
}

kotlin {
 sourceSets {
 macosMain.dependencies {
 // Will be exported in the framework.
 api(project(":dependency"))
 api("org.example:exported-library:1.0")

 // Will not be exported in the framework.
 api("org.example:not-exported-library:1.0")
 }
 }

 macosX64("macos").binaries {
 framework {
 export(project(":dependency"))
 export("org.example:exported-library:1.0")
 }
 }
}

As shown in this example, maven dependency also can be exported. But due to current
limitations of Gradle metadata such a dependency should be either a platform one (e.g.
kotlinx-coroutines-core-native_debug_macos_x64 instead of kotlinx-

coroutines-core-native) or be exported transitively (see below).

Exporting dependencies in frameworks

255

By default, export works non-transitively. If a library foo depending on library bar is exported,

only methods of foo will be added in the output framework. This behaviour can by changed by

the transitiveExport ag.

binaries {
 framework {
 export project(':dependency')
 // Export transitively.
 transitiveExport = true
 }
}

binaries {
 framework {
 export(project(":dependency"))
 // Export transitively.
 transitiveExport = true
 }
}

By default, an Objective-C framework produced by Kotlin/Native supports only one platform.
However, such frameworks can be merged into a single universal (fat) binary using the lipo

utility. Particularly, such an operation makes sense for 32-bit and 64-bit iOS frameworks. In this
case the resulting universal framework can be used on both 32-bit and 64-bit devices.

The Gradle plugin provides a separate task that creates a universal framework for iOS targets
from several regular ones. The example below shows how to use this task. Note that the fat
framework must have the same base name as the initial frameworks.

Building universal frameworks

256

import org.jetbrains.kotlin.gradle.tasks.FatFrameworkTask

kotlin {
 // Create and configure the targets.
 targets {
 iosArm32("ios32")
 iosArm64("ios64")

 configure([ios32, ios64]) {
 binaries.framework {
 baseName = "my_framework"
 }
 }
 }

 // Create a task building a fat framework.
 task debugFatFramework(type: FatFrameworkTask) {
 // The fat framework must have the same base name as the initial frameworks.
 baseName = "my_framework"

 // The default destination directory is '<build directory>/fat-framework'.
 destinationDir = file("$buildDir/fat-framework/debug")

 // Specify the frameworks to be merged.
 from(
 targets.ios32.binaries.getFramework("DEBUG"),
 targets.ios64.binaries.getFramework("DEBUG")
)
 }
}

import org.jetbrains.kotlin.gradle.tasks.FatFrameworkTask

kotlin {
 // Create and configure the targets.
 val ios32 = iosArm32("ios32")
 val ios64 = iosArm64("ios64")

 configure(listOf(ios32, ios64)) {
 binaries.framework {
 baseName = "my_framework"
 }
 }

 // Create a task building a fat framework.
 tasks.create("debugFatFramework", FatFrameworkTask::class) {
 // The fat framework must have the same base name as the initial frameworks.
 baseName = "my_framework"

 // The default destination directory is '<build directory>/fat-framework'.
 destinationDir = buildDir.resolve("fat-framework/debug")

 // Specify the frameworks to be merged.
 from(
 ios32.binaries.getFramework("DEBUG"),
 ios64.binaries.getFramework("DEBUG")
)
 }
}

257

Since Kotlin/Native provides interoperability with native languages, there is a DSL allowing one to
con gure this feature for a speci c compilation.

A compilation can interact with several native libraries. Interoperability with each of them can be
con gured in the cinterops block of the compilation:

kotlin {
 linuxX64 { // Replace with a target you need.
 compilations.main {
 cinterops {
 myInterop {
 // Def-file describing the native API.
 // The default path is src/nativeInterop/cinterop/<interop-name>.def
 defFile project.file("def-file.def")

 // Package to place the Kotlin API generated.
 packageName 'org.sample'

 // Options to be passed to compiler by cinterop tool.
 compilerOpts '-Ipath/to/headers'

 // Directories for header search (an analogue of the -I<path>
compiler option).
 includeDirs.allHeaders("path1", "path2")

 // Additional directories to search headers listed in the
'headerFilter' def-file option.
 // -headerFilterAdditionalSearchPrefix command line option analogue.
 includeDirs.headerFilterOnly("path1", "path2")

 // A shortcut for includeDirs.allHeaders.
 includeDirs("include/directory", "another/directory")
 }

 anotherInterop { /* ... */ }
 }
 }
 }
}

kotlin {
 linuxX64 { // Replace with a target you need.
 compilations.getByName("main") {
 val myInterop by cinterops.creating {
 // Def-file describing the native API.
 // The default path is src/nativeInterop/cinterop/<interop-name>.def
 defFile(project.file("def-file.def"))

 // Package to place the Kotlin API generated.
 packageName("org.sample")

 // Options to be passed to compiler by cinterop tool.
 compilerOpts("-Ipath/to/headers")

 // Directories to look for headers.
 includeDirs.apply {
 // Directories for header search (an analogue of the -I<path>

CInterop support

258

 // Directories for header search (an analogue of the -I<path>
compiler option).
 allHeaders("path1", "path2")

 // Additional directories to search headers listed in the
'headerFilter' def-file option.
 // -headerFilterAdditionalSearchPrefix command line option analogue.
 headerFilterOnly("path1", "path2")
 }
 // A shortcut for includeDirs.allHeaders.
 includeDirs("include/directory", "another/directory")
 }

 val anotherInterop by cinterops.creating { /* ... */ }
 }
 }
}

Often it's necessary to specify target-speci c linker options for a binary which uses a native
library. It can by done using the linkerOpts property of the binary. See the Con guring

binaries section for details.

259

Other

Sometimes it is convenient to destructure an object into a number of variables, for example:

val (name, age) = person

This syntax is called a destructuring declaration. A destructuring declaration creates multiple
variables at once. We have declared two new variables: name and age , and can use them

independently:

println(name)
println(age)

A destructuring declaration is compiled down to the following code:

val name = person.component1()
val age = person.component2()

The component1() and component2() functions are another example of the principle of

conventions widely used in Kotlin (see operators like + and * , for-loops etc.). Anything can be

on the right-hand side of a destructuring declaration, as long as the required number of
component functions can be called on it. And, of course, there can be component3() and

component4() and so on.

Note that the componentN() functions need to be marked with the operator keyword to

allow using them in a destructuring declaration.

Destructuring declarations also work in for-loops: when you say:

for ((a, b) in collection) { ... }

Variables a and b get the values returned by component1() and component2() called on

elements of the collection.

Let's say we need to return two things from a function. For example, a result object and a status
of some sort. A compact way of doing this in Kotlin is to declare a data class and return its
instance:

Destructuring Declarations

Example: Returning Two Values from a Function

260

data class Result(val result: Int, val status: Status)
fun function(...): Result {
 // computations

 return Result(result, status)
}

// Now, to use this function:
val (result, status) = function(...)

Since data classes automatically declare componentN() functions, destructuring declarations

work here.

NOTE: we could also use the standard class Pair and have function() return Pair<Int,

Status> , but it's often better to have your data named properly.

Probably the nicest way to traverse a map is this:

for ((key, value) in map) {
 // do something with the key and the value
}

To make this work, we should

present the map as a sequence of values by providing an iterator() function;

present each of the elements as a pair by providing functions component1() and

component2() .

And indeed, the standard library provides such extensions:

operator fun <K, V> Map<K, V>.iterator(): Iterator<Map.Entry<K, V>> =
entrySet().iterator()
operator fun <K, V> Map.Entry<K, V>.component1() = getKey()
operator fun <K, V> Map.Entry<K, V>.component2() = getValue()

So you can freely use destructuring declarations in for-loops with maps (as well as collections of

data class instances etc).

If you don't need a variable in the destructuring declaration, you can place an underscore instead
of its name:

val (_, status) = getResult()

The componentN() operator functions are not called for the components that are skipped in

this way.

Example: Destructuring Declarations and Maps

—

—

Underscore for unused variables (since 1.1)

Destructuring in Lambdas (since 1.1)

261

You can use the destructuring declarations syntax for lambda parameters. If a lambda has a
parameter of the Pair type (or Map.Entry , or any other type that has the appropriate

componentN functions), you can introduce several new parameters instead of one by putting

them in parentheses:

map.mapValues { entry -> "${entry.value}!" }
map.mapValues { (key, value) -> "$value!" }

Note the di erence between declaring two parameters and declaring a destructuring pair instead
of a parameter:

{ a -> ... } // one parameter
{ a, b -> ... } // two parameters
{ (a, b) -> ... } // a destructured pair
{ (a, b), c -> ... } // a destructured pair and another parameter

If a component of the destructured parameter is unused, you can replace it with the underscore
to avoid inventing its name:

map.mapValues { (_, value) -> "$value!" }

You can specify the type for the whole destructured parameter or for a speci c component
separately:

map.mapValues { (_, value): Map.Entry<Int, String> -> "$value!" }

map.mapValues { (_, value: String) -> "$value!" }

262

We can check whether an object conforms to a given type at runtime by using the is operator

or its negated form !is :

if (obj is String) {
 print(obj.length)
}

if (obj !is String) { // same as !(obj is String)
 print("Not a String")
}
else {
 print(obj.length)
}

In many cases, one does not need to use explicit cast operators in Kotlin, because the compiler
tracks the is -checks and explicit casts for immutable values and inserts (safe) casts

automatically when needed:

fun demo(x: Any) {
 if (x is String) {
 print(x.length) // x is automatically cast to String
 }
}

The compiler is smart enough to know a cast to be safe if a negative check leads to a return:

if (x !is String) return

print(x.length) // x is automatically cast to String

or in the right-hand side of && and || :

// x is automatically cast to string on the right-hand side of `||`
if (x !is String || x.length == 0) return

// x is automatically cast to string on the right-hand side of `&&`
if (x is String && x.length > 0) {
 print(x.length) // x is automatically cast to String
}

Such smart casts work for when-expressions and while-loops as well:

when (x) {
 is Int -> print(x + 1)
 is String -> print(x.length + 1)
 is IntArray -> print(x.sum())
}

Type Checks and Casts: 'is' and 'as'

is and !is Operators

Smart Casts

263

Note that smart casts do not work when the compiler cannot guarantee that the variable cannot
change between the check and the usage. More speci cally, smart casts are applicable according
to the following rules:

val local variables - always except for local delegated properties;

val properties - if the property is private or internal or the check is performed in the same

module where the property is declared. Smart casts aren't applicable to open properties or
properties that have custom getters;

var local variables - if the variable is not modi ed between the check and the usage, is not

captured in a lambda that modi es it, and is not a local delegated property;

var properties - never (because the variable can be modi ed at any time by other code).

Usually, the cast operator throws an exception if the cast is not possible. Thus, we call it unsafe.
The unsafe cast in Kotlin is done by the in x operator as (see operator precedence):

val x: String = y as String

Note that null cannot be cast to String as this type is not nullable, i.e. if y is null, the code

above throws an exception. To make such code correct for null values, use the nullable type on
the right hand side of the cast:

val x: String? = y as String?

To avoid an exception being thrown, one can use a safe cast operator as? that returns null on

failure:

val x: String? = y as? String

Note that despite the fact that the right-hand side of as? is a non-null type String the result of

the cast is nullable.

Kotlin ensures type safety of operations involving generics at compile time, while, at runtime,
instances of generic types hold no information about their actual type arguments. For example,
List<Foo> is erased to just List<*> . In general, there is no way to check whether an instance

belongs to a generic type with certain type arguments at runtime.

Given that, the compiler prohibits is-checks that cannot be performed at runtime due to type

erasure, such as ints is List<Int> or list is T (type parameter). You can, however,

check an instance against a star-projected type:

—

—

—

—

"Unsafe" cast operator

"Safe" (nullable) cast operator

Type erasure and generic type checks

264

if (something is List<*>) {
 something.forEach { println(it) } // The items are typed as `Any?`
}

Similarly, when you already have the type arguments of an instance checked statically (at compile
time), you can make an is-check or a cast that involves the non-generic part of the type. Note

that angle brackets are omitted in this case:

fun handleStrings(list: List<String>) {
 if (list is ArrayList) {
 // `list` is smart-cast to `ArrayList<String>`
 }
}

The same syntax with omitted type arguments can be used for casts that do not take type
arguments into account: list as ArrayList .

Inline functions with rei ed type parameters have their actual type arguments inlined at each call
site, which enables arg is T checks for the type parameters, but if arg is an instance of a

generic type itself, its type arguments are still erased. Example:

inline fun <reified A, reified B> Pair<*, *>.asPairOf(): Pair<A, B>? {
 if (first !is A || second !is B) return null
 return first as A to second as B
}

val somePair: Pair<Any?, Any?> = "items" to listOf(1, 2, 3)

val stringToSomething = somePair.asPairOf<String, Any>()
val stringToInt = somePair.asPairOf<String, Int>()
val stringToList = somePair.asPairOf<String, List<*>>()
val stringToStringList = somePair.asPairOf<String, List<String>>() // Breaks type safety!

As said above, type erasure makes checking actual type arguments of a generic type instance
impossible at runtime, and generic types in the code might be connected to each other not
closely enough for the compiler to ensure type safety.

Even so, sometimes we have high-level program logic that implies type safety instead. For
example:

fun readDictionary(file: File): Map<String, *> = file.inputStream().use {
 TODO("Read a mapping of strings to arbitrary elements.")
}

// We saved a map with `Int`s into that file
val intsFile = File("ints.dictionary")

// Warning: Unchecked cast: `Map<String, *>` to `Map<String, Int>`
val intsDictionary: Map<String, Int> = readDictionary(intsFile) as Map<String, Int>

Unchecked casts

265

The compiler produces a warning for the cast in the last line. The cast cannot be fully checked at
runtime and provides no guarantee that the values in the map are Int .

To avoid unchecked casts, you can redesign the program structure: in the example above, there
could be interfaces DictionaryReader<T> and DictionaryWriter<T> with type-safe

implementations for di erent types. You can introduce reasonable abstractions to move
unchecked casts from calling code to the implementation details. Proper use of generic variance
can also help.

For generic functions, using rei ed type parameters makes the casts such as arg as T checked,

unless arg 's type has its own type arguments that are erased.

An unchecked cast warning can be suppressed by annotating the statement or the declaration
where it occurs with @Suppress("UNCHECKED_CAST") :

inline fun <reified T> List<*>.asListOfType(): List<T>? =
 if (all { it is T })
 @Suppress("UNCHECKED_CAST")
 this as List<T> else
 null

On the JVM, the array types (Array<Foo>) retain the information about the erased type of their

elements, and the type casts to an array type are partially checked: the nullability and actual type
arguments of the elements type are still erased. For example, the cast foo as

Array<List<String>?> will succeed if foo is an array holding any List<*> , nullable or not.

266

To denote the current receiver, we use this expressions:

In a member of a class, this refers to the current object of that class.

In an extension function or a function literal with receiver this denotes the receiver

parameter that is passed on the left-hand side of a dot.

If this has no quali ers, it refers to the innermost enclosing scope. To refer to this in other

scopes, label quali ers are used:

To access this from an outer scope (a class, or extension function, or labeled function literal

with receiver) we write this@label where @label is a label on the scope this is meant to be

from:

class A { // implicit label @A
 inner class B { // implicit label @B
 fun Int.foo() { // implicit label @foo
 val a = this@A // A's this
 val b = this@B // B's this

 val c = this // foo()'s receiver, an Int
 val c1 = this@foo // foo()'s receiver, an Int

 val funLit = lambda@ fun String.() {
 val d = this // funLit's receiver
 }

 val funLit2 = { s: String ->
 // foo()'s receiver, since enclosing lambda expression
 // doesn't have any receiver
 val d1 = this
 }
 }
 }
}

This Expression

—

—

Quali ed this

267

In Kotlin there are two types of equality:

Structural equality (a check for equals()).

Referential equality (two references point to the same object);

Structural equality is checked by the == operation (and its negated counterpart !=). By

convention, an expression like a == b is translated to:

a?.equals(b) ?: (b === null)

I.e. if a is not null , it calls the equals(Any?) function, otherwise (i.e. a is null) it checks

that b is referentially equal to null .

Note that there's no point in optimizing your code when comparing to null explicitly: a ==

null will be automatically translated to a === null .

To provide a custom equals check implementation, override the equals(other: Any?):

Boolean function. Functions with the same name and other signatures, like equals(other:

Foo) , don't a ect equality checks with the operators == and != .

Structural equality has nothing to do with comparison de ned by the Comparable<...>

interface, so only a custom equals(Any?) implementation may a ect the behavior of the

operator.

When an equality check operands are statically known to be Float or Double (nullable or not),

the check follows the IEEE 754 Standard for Floating-Point Arithmetic.

Otherwise, the structural equality is used, which disagrees with the standard so that NaN is equal

to itself, and -0.0 is not equal to 0.0 .

See: Floating Point Numbers Comparison.

Referential equality is checked by the === operation (and its negated counterpart !==). a ===

b evaluates to true if and only if a and b point to the same object. For values which are

represented as primitive types at runtime (for example, Int), the === equality check is

equivalent to the == check.

Equality

—

—

Structural equality

Floating point numbers equality

Referential equality

268

Kotlin allows us to provide implementations for a prede ned set of operators on our types.
These operators have xed symbolic representation (like + or *) and xed precedence. To

implement an operator, we provide a member function or an extension function with a xed
name, for the corresponding type, i.e. left-hand side type for binary operations and argument
type for unary ones. Functions that overload operators need to be marked with the operator

modi er.

Further we describe the conventions that regulate operator overloading for di erent operators.

Expression Translated to
+a a.unaryPlus()

-a a.unaryMinus()

!a a.not()

This table says that when the compiler processes, for example, an expression +a , it performs the

following steps:

Determines the type of a , let it be T ;

Looks up a function unaryPlus() with the operator modi er and no parameters for the

receiver T , i.e. a member function or an extension function;

If the function is absent or ambiguous, it is a compilation error;

If the function is present and its return type is R , the expression +a has type R ;

Note that these operations, as well as all the others, are optimized for Basic types and do not
introduce overhead of function calls for them.

As an example, here's how you can overload the unary minus operator:

data class Point(val x: Int, val y: Int)

operator fun Point.unaryMinus() = Point(-x, -y)

val point = Point(10, 20)

fun main() {
 println(-point) // prints "Point(x=-10, y=-20)"
}

Operator overloading

Unary operations

Unary pre x operators

—

—

—

—

Increments and decrements

269

Expression Translated to
a++ a.inc() + see below
a-- a.dec() + see below

The inc() and dec() functions must return a value, which will be assigned to the variable on

which the ++ or -- operation was used. They shouldn't mutate the object on which the inc or

dec was invoked.

The compiler performs the following steps for resolution of an operator in the post x form, e.g.
a++ :

Determines the type of a , let it be T ;

Looks up a function inc() with the operator modi er and no parameters, applicable to

the receiver of type T ;

Checks that the return type of the function is a subtype of T .

The e ect of computing the expression is:

Store the initial value of a to a temporary storage a0 ;

Assign the result of a.inc() to a ;

Return a0 as a result of the expression.

For a-- the steps are completely analogous.

For the pre x forms ++a and --a resolution works the same way, and the e ect is:

Assign the result of a.inc() to a ;

Return the new value of a as a result of the expression.

Expression Translated to
a + b a.plus(b)

a - b a.minus(b)

a * b a.times(b)

a / b a.div(b)

a % b a.rem(b), a.mod(b) (deprecated)
a..b a.rangeTo(b)

For the operations in this table, the compiler just resolves the expression in the Translated to
column.

—

—

—

—

—

—

—

—

Binary operations

Arithmetic operators

270

Note that the rem operator is supported since Kotlin 1.1. Kotlin 1.0 uses the mod operator,

which is deprecated in Kotlin 1.1.

Below is an example Counter class that starts at a given value and can be incremented using the
overloaded + operator:

data class Counter(val dayIndex: Int) {
 operator fun plus(increment: Int): Counter {
 return Counter(dayIndex + increment)
 }
}

Expression Translated to
a in b b.contains(a)

a !in b !b.contains(a)

For in and !in the procedure is the same, but the order of arguments is reversed.

Expression Translated to
a[i] a.get(i)

a[i, j] a.get(i, j)

a[i_1, ..., i_n] a.get(i_1, ..., i_n)

a[i] = b a.set(i, b)

a[i, j] = b a.set(i, j, b)

a[i_1, ..., i_n] = b a.set(i_1, ..., i_n, b)

Square brackets are translated to calls to get and set with appropriate numbers of

arguments.

Expression Translated to
a() a.invoke()

a(i) a.invoke(i)

a(i, j) a.invoke(i, j)

a(i_1, ..., i_n) a.invoke(i_1, ..., i_n)

Parentheses are translated to calls to invoke with appropriate number of arguments.

Example

'In' operator

Indexed access operator

Invoke operator

Augmented assignments

271

Expression Translated to
a += b a.plusAssign(b)

a -= b a.minusAssign(b)

a *= b a.timesAssign(b)

a /= b a.divAssign(b)

a %= b a.remAssign(b), a.modAssign(b) (deprecated)

For the assignment operations, e.g. a += b , the compiler performs the following steps:

If the function from the right column is available

If the corresponding binary function (i.e. plus() for plusAssign()) is available too,

report error (ambiguity),

Make sure its return type is Unit , and report an error otherwise,

Generate code for a.plusAssign(b) ;

Otherwise, try to generate code for a = a + b (this includes a type check: the type of a +

b must be a subtype of a).

Note: assignments are NOT expressions in Kotlin.

Expression Translated to
a == b a?.equals(b) ?: (b === null)

a != b !(a?.equals(b) ?: (b === null))

These operators only work with the function equals(other: Any?): Boolean, which can be

overridden to provide custom equality check implementation. Any other function with the same
name (like equals(other: Foo)) will not be called.

Note: === and !== (identity checks) are not overloadable, so no conventions exist for them.

The == operation is special: it is translated to a complex expression that screens for null 's.

null == null is always true, and x == null for a non-null x is always false and won't

invoke x.equals() .

Expression Translated to
a > b a.compareTo(b) > 0

a < b a.compareTo(b) < 0

a >= b a.compareTo(b) >= 0

a <= b a.compareTo(b) <= 0

All comparisons are translated into calls to compareTo , that is required to return Int .

—

—

—

—

—

Equality and inequality operators

Comparison operators

272

provideDelegate , getValue and setValue operator functions are described in Delegated

properties.

We can simulate custom in x operations by using in x function calls.

Property delegation operators

In x calls for named functions

273

Kotlin's type system is aimed at eliminating the danger of null references from code, also known
as the The Billion Dollar Mistake.

One of the most common pitfalls in many programming languages, including Java, is that
accessing a member of a null reference will result in a null reference exception. In Java this would
be the equivalent of a NullPointerException or NPE for short.

Kotlin's type system is aimed to eliminate NullPointerException 's from our code. The only

possible causes of NPE's may be:

An explicit call to throw NullPointerException() ;

Usage of the !! operator that is described below;

Some data inconsistency with regard to initialization, such as when:

An uninitialized this available in a constructor is passed and used somewhere ("leaking

this");

A superclass constructor calls an open member whose implementation in the derived class
uses uninitialized state;

Java interoperation:

Attempts to access a member on a null reference of a platform type;

Generic types used for Java interoperation with incorrect nullability, e.g. a piece of Java
code might add null into a Kotlin MutableList<String> , meaning that

MutableList<String?> should be used for working with it;

Other issues caused by external Java code.

In Kotlin, the type system distinguishes between references that can hold null (nullable

references) and those that can not (non-null references). For example, a regular variable of type
String can not hold null:

var a: String = "abc"
a = null // compilation error

To allow nulls, we can declare a variable as nullable string, written String? :

var b: String? = "abc"
b = null // ok
print(b)

Now, if you call a method or access a property on a , it's guaranteed not to cause an NPE, so you

can safely say:

val l = a.length

Null Safety

Nullable types and Non-Null Types

—

—

—

—

—

—

—

—

—

274

http://en.wikipedia.org/wiki/Tony_Hoare#Apologies_and_retractions

But if you want to access the same property on b , that would not be safe, and the compiler

reports an error:

val l = b.length // error: variable 'b' can be null

But we still need to access that property, right? There are a few ways of doing that.

First, you can explicitly check if b is null, and handle the two options separately:

val l = if (b != null) b.length else -1

The compiler tracks the information about the check you performed, and allows the call to
length inside the if. More complex conditions are supported as well:

val b: String? = "Kotlin"
if (b != null && b.length > 0) {
 print("String of length ${b.length}")
} else {
 print("Empty string")
}

Note that this only works where b is immutable (i.e. a local variable which is not modi ed

between the check and the usage or a member val which has a backing eld and is not

overridable), because otherwise it might happen that b changes to null after the check.

Your second option is the safe call operator, written ?. :

val a = "Kotlin"
val b: String? = null
println(b?.length)
println(a?.length) // Unnecessary safe call

This returns b.length if b is not null, and null otherwise. The type of this expression is

Int? .

Safe calls are useful in chains. For example, if Bob, an Employee, may be assigned to a
Department (or not), that in turn may have another Employee as a department head, then to
obtain the name of Bob's department head (if any), we write the following:

bob?.department?.head?.name

Such a chain returns null if any of the properties in it is null.

To perform a certain operation only for non-null values, you can use the safe call operator
together with let:

Checking for null in conditions

Safe Calls

275

val listWithNulls: List<String?> = listOf("Kotlin", null)
for (item in listWithNulls) {
 item?.let { println(it) } // prints Kotlin and ignores null
}

A safe call can also be placed on the left side of an assignment. Then, if one of the receivers in the
safe calls chain is null, the assignment is skipped, and the expression on the right is not evaluated
at all:

// If either `person` or `person.department` is null, the function is not called:
person?.department?.head = managersPool.getManager()

When we have a nullable reference r , we can say "if r is not null, use it, otherwise use some

non-null value x ":

val l: Int = if (b != null) b.length else -1

Along with the complete if-expression, this can be expressed with the Elvis operator, written

?: :

val l = b?.length ?: -1

If the expression to the left of ?: is not null, the elvis operator returns it, otherwise it returns

the expression to the right. Note that the right-hand side expression is evaluated only if the left-
hand side is null.

Note that, since throw and return are expressions in Kotlin, they can also be used on the right

hand side of the elvis operator. This can be very handy, for example, for checking function
arguments:

fun foo(node: Node): String? {
 val parent = node.getParent() ?: return null
 val name = node.getName() ?: throw IllegalArgumentException("name expected")
 // ...
}

The third option is for NPE-lovers: the not-null assertion operator (!!) converts any value to a

non-null type and throws an exception if the value is null. We can write b!! , and this will return

a non-null value of b (e.g., a String in our example) or throw an NPE if b is null:

val l = b!!.length

Thus, if you want an NPE, you can have it, but you have to ask for it explicitly, and it does not
appear out of the blue.

Elvis Operator

The !! Operator

276

Regular casts may result into a ClassCastException if the object is not of the target type.

Another option is to use safe casts that return null if the attempt was not successful:

val aInt: Int? = a as? Int

If you have a collection of elements of a nullable type and want to lter non-null elements, you
can do so by using filterNotNull :

val nullableList: List<Int?> = listOf(1, 2, null, 4)
val intList: List<Int> = nullableList.filterNotNull()

Safe Casts

Collections of Nullable Type

277

All exception classes in Kotlin are descendants of the class Throwable . Every exception has a

message, stack trace and an optional cause.

To throw an exception object, use the throw-expression:

throw Exception("Hi There!")

To catch an exception, use the try-expression:

try {
 // some code
}
catch (e: SomeException) {
 // handler
}
finally {
 // optional finally block
}

There may be zero or more catch blocks. finally block may be omitted. However at least one

catch or finally block should be present.

try is an expression, i.e. it may have a return value:

val a: Int? = try { parseInt(input) } catch (e: NumberFormatException) { null }

The returned value of a try-expression is either the last expression in the try block or the last

expression in the catch block (or blocks). Contents of the finally block do not a ect the result

of the expression.

Kotlin does not have checked exceptions. There are many reasons for this, but we will provide a
simple example.

The following is an example interface of the JDK implemented by StringBuilder class:

Appendable append(CharSequence csq) throws IOException;

What does this signature say? It says that every time I append a string to something (a
StringBuilder , some kind of a log, a console, etc.) I have to catch those IOExceptions .

Why? Because it might be performing IO (Writer also implements Appendable)… So it results

into this kind of code all over the place:

Exceptions

Exception Classes

Try is an expression

Checked Exceptions

278

try {
 log.append(message)
}
catch (IOException e) {
 // Must be safe
}

And this is no good, see E ective Java, 3rd Edition, Item 77: Don't ignore exceptions.

Bruce Eckel says in Does Java need Checked Exceptions?:

Examination of small programs leads to the conclusion that requiring exception
speci cations could both enhance developer productivity and enhance code quality, but
experience with large software projects suggests a di erent result – decreased productivity
and little or no increase in code quality.

Other citations of this sort:

Java's checked exceptions were a mistake (Rod Waldho)

The Trouble with Checked Exceptions (Anders Hejlsberg)

throw is an expression in Kotlin, so you can use it, for example, as part of an Elvis expression:

val s = person.name ?: throw IllegalArgumentException("Name required")

The type of the throw expression is the special type Nothing . The type has no values and is

used to mark code locations that can never be reached. In your own code, you can use Nothing

to mark a function that never returns:

fun fail(message: String): Nothing {
 throw IllegalArgumentException(message)
}

When you call this function, the compiler will know that the execution doesn't continue beyond
the call:

val s = person.name ?: fail("Name required")
println(s) // 's' is known to be initialized at this point

Another case where you may encounter this type is type inference. The nullable variant of this
type, Nothing? , has exactly one possible value, which is null . If you use null to initialize a

value of an inferred type and there's no other information that can be used to determine a more
speci c type, the compiler will infer the Nothing? type:

val x = null // 'x' has type `Nothing?`
val l = listOf(null) // 'l' has type `List<Nothing?>

—

—

The Nothing type

Java Interoperability

279

http://www.oracle.com/technetwork/java/effectivejava-136174.html
http://www.mindview.net/Etc/Discussions/CheckedExceptions
http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
http://www.artima.com/intv/handcuffs.html

Please see the section on exceptions in the Java Interoperability section for information about
Java interoperability.

280

Annotations are means of attaching metadata to code. To declare an annotation, put the
annotation modi er in front of a class:

annotation class Fancy

Additional attributes of the annotation can be speci ed by annotating the annotation class with
meta-annotations:

@Target speci es the possible kinds of elements which can be annotated with the annotation

(classes, functions, properties, expressions etc.);

@Retention speci es whether the annotation is stored in the compiled class les and

whether it's visible through re ection at runtime (by default, both are true);

@Repeatable allows using the same annotation on a single element multiple times;

@MustBeDocumented speci es that the annotation is part of the public API and should be

included in the class or method signature shown in the generated API documentation.

@Target(AnnotationTarget.CLASS, AnnotationTarget.FUNCTION,
 AnnotationTarget.VALUE_PARAMETER, AnnotationTarget.EXPRESSION)
@Retention(AnnotationRetention.SOURCE)
@MustBeDocumented
annotation class Fancy

@Fancy class Foo {
 @Fancy fun baz(@Fancy foo: Int): Int {
 return (@Fancy 1)
 }
}

If you need to annotate the primary constructor of a class, you need to add the constructor

keyword to the constructor declaration, and add the annotations before it:

class Foo @Inject constructor(dependency: MyDependency) { ... }

You can also annotate property accessors:

class Foo {
 var x: MyDependency? = null
 @Inject set
}

Annotations may have constructors that take parameters.

Annotations

Annotation Declaration

—

—

—

—

Usage

Constructors

281

annotation class Special(val why: String)

@Special("example") class Foo {}

Allowed parameter types are:

types that correspond to Java primitive types (Int, Long etc.);

strings;

classes (Foo::class);

enums;

other annotations;

arrays of the types listed above.

Annotation parameters cannot have nullable types, because the JVM does not support storing
null as a value of an annotation attribute.

If an annotation is used as a parameter of another annotation, its name is not pre xed with the @
character:

annotation class ReplaceWith(val expression: String)

annotation class Deprecated(
 val message: String,
 val replaceWith: ReplaceWith = ReplaceWith(""))

@Deprecated("This function is deprecated, use === instead", ReplaceWith("this ===
other"))

If you need to specify a class as an argument of an annotation, use a Kotlin class (KClass). The
Kotlin compiler will automatically convert it to a Java class, so that the Java code will be able to see
the annotations and arguments normally.

import kotlin.reflect.KClass

annotation class Ann(val arg1: KClass<*>, val arg2: KClass<out Any>)

@Ann(String::class, Int::class) class MyClass

Annotations can also be used on lambdas. They will be applied to the invoke() method into

which the body of the lambda is generated. This is useful for frameworks like Quasar, which uses
annotations for concurrency control.

annotation class Suspendable

val f = @Suspendable { Fiber.sleep(10) }

—

—

—

—

—

—

Lambdas

282

http://www.paralleluniverse.co/quasar/

When you're annotating a property or a primary constructor parameter, there are multiple Java
elements which are generated from the corresponding Kotlin element, and therefore multiple
possible locations for the annotation in the generated Java bytecode. To specify how exactly the
annotation should be generated, use the following syntax:

class Example(@field:Ann val foo, // annotate Java field
 @get:Ann val bar, // annotate Java getter
 @param:Ann val quux) // annotate Java constructor parameter

The same syntax can be used to annotate the entire le. To do this, put an annotation with the
target file at the top level of a le, before the package directive or before all imports if the le

is in the default package:

@file:JvmName("Foo")

package org.jetbrains.demo

If you have multiple annotations with the same target, you can avoid repeating the target by
adding brackets after the target and putting all the annotations inside the brackets:

class Example {
 @set:[Inject VisibleForTesting]
 var collaborator: Collaborator
}

The full list of supported use-site targets is:

file ;

property (annotations with this target are not visible to Java);

field ;

get (property getter);

set (property setter);

receiver (receiver parameter of an extension function or property);

param (constructor parameter);

setparam (property setter parameter);

delegate (the eld storing the delegate instance for a delegated property).

To annotate the receiver parameter of an extension function, use the following syntax:

fun @receiver:Fancy String.myExtension() { ... }

If you don't specify a use-site target, the target is chosen according to the @Target annotation

of the annotation being used. If there are multiple applicable targets, the rst applicable target
from the following list is used:

Annotation Use-site Targets

—

—

—

—

—

—

—

—

—

283

param ;

property ;

field .

Java annotations are 100% compatible with Kotlin:

import org.junit.Test
import org.junit.Assert.*
import org.junit.Rule
import org.junit.rules.*

class Tests {
 // apply @Rule annotation to property getter
 @get:Rule val tempFolder = TemporaryFolder()

 @Test fun simple() {
 val f = tempFolder.newFile()
 assertEquals(42, getTheAnswer())
 }
}

Since the order of parameters for an annotation written in Java is not de ned, you can't use a
regular function call syntax for passing the arguments. Instead, you need to use the named
argument syntax:

// Java
public @interface Ann {
 int intValue();
 String stringValue();
}

// Kotlin
@Ann(intValue = 1, stringValue = "abc") class C

Just like in Java, a special case is the value parameter; its value can be speci ed without an

explicit name:

// Java
public @interface AnnWithValue {
 String value();
}

// Kotlin
@AnnWithValue("abc") class C

If the value argument in Java has an array type, it becomes a vararg parameter in Kotlin:

—

—

—

Java Annotations

Arrays as annotation parameters

284

// Java
public @interface AnnWithArrayValue {
 String[] value();
}

// Kotlin
@AnnWithArrayValue("abc", "foo", "bar") class C

For other arguments that have an array type, you need to use the array literal syntax (since Kotlin
1.2) or arrayOf(...) :

// Java
public @interface AnnWithArrayMethod {
 String[] names();
}

// Kotlin 1.2+:
@AnnWithArrayMethod(names = ["abc", "foo", "bar"])
class C

// Older Kotlin versions:
@AnnWithArrayMethod(names = arrayOf("abc", "foo", "bar"))
class D

Values of an annotation instance are exposed as properties to Kotlin code:

// Java
public @interface Ann {
 int value();
}

// Kotlin
fun foo(ann: Ann) {
 val i = ann.value
}

Accessing properties of an annotation instance

285

Re ection is a set of language and library features that allows for introspecting the structure of
your own program at runtime. Kotlin makes functions and properties rst-class citizens in the
language, and introspecting them (i.e. learning a name or a type of a property or function at
runtime) is closely intertwined with simply using a functional or reactive style.

On the Java platform, the runtime component required for using the re ection features
is distributed as a separate JAR le (kotlin-reflect.jar). This is done to reduce the

required size of the runtime library for applications that do not use re ection features. If
you do use re ection, please make sure that the .jar le is added to the classpath of your
project.

The most basic re ection feature is getting the runtime reference to a Kotlin class. To obtain the
reference to a statically known Kotlin class, you can use the class literal syntax:

val c = MyClass::class

The reference is a value of type KClass.

Note that a Kotlin class reference is not the same as a Java class reference. To obtain a Java class
reference, use the .java property on a KClass instance.

You can get the reference to a class of a speci c object with the same ::class syntax by using

the object as a receiver:

val widget: Widget = ...
assert(widget is GoodWidget) { "Bad widget: ${widget::class.qualifiedName}" }

You obtain the reference to an exact class of an object, for instance GoodWidget or

BadWidget , despite the type of the receiver expression (Widget).

References to functions, properties, and constructors, apart from introspecting the program
structure, can also be called or used as instances of function types.

The common supertype for all callable references is KCallable<out R>, where R is the return

value type, which is the property type for properties, and the constructed type for constructors.

When we have a named function declared like this:

Re ection

Class References

Bound Class References (since 1.1)

Callable references

Function References

286

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-callable/index.html

fun isOdd(x: Int) = x % 2 != 0

We can easily call it directly (isOdd(5)), but we can also use it as a function type value, e.g. pass

it to another function. To do this, we use the :: operator:

val numbers = listOf(1, 2, 3)
println(numbers.filter(::isOdd))

Here ::isOdd is a value of function type (Int) -> Boolean .

Function references belong to one of the KFunction<out R> subtypes, depending on the

parameter count, e.g. KFunction3<T1, T2, T3, R> .

:: can be used with overloaded functions when the expected type is known from the context.

For example:

fun isOdd(x: Int) = x % 2 != 0
fun isOdd(s: String) = s == "brillig" || s == "slithy" || s == "tove"

val numbers = listOf(1, 2, 3)
println(numbers.filter(::isOdd)) // refers to isOdd(x: Int)

Alternatively, you can provide the necessary context by storing the method reference in a
variable with an explicitly speci ed type:

val predicate: (String) -> Boolean = ::isOdd // refers to isOdd(x: String)

If we need to use a member of a class, or an extension function, it needs to be quali ed, e.g.
String::toCharArray .

Note that even if you initialize a variable with a reference to an extension function, the inferred
function type will have no receiver (it will have an additional parameter accepting a receiver
object). To have a function type with receiver instead, specify the type explicitly:

val isEmptyStringList: List<String>.() -> Boolean = List<String>::isEmpty

Consider the following function:

fun <A, B, C> compose(f: (B) -> C, g: (A) -> B): (A) -> C {
 return { x -> f(g(x)) }
}

It returns a composition of two functions passed to it: compose(f, g) = f(g(*)) . Now, you

can apply it to callable references:

Example: Function Composition

287

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-function/index.html

fun length(s: String) = s.length

val oddLength = compose(::isOdd, ::length)
val strings = listOf("a", "ab", "abc")

println(strings.filter(oddLength))

To access properties as rst-class objects in Kotlin, we can also use the :: operator:

val x = 1

fun main() {
 println(::x.get())
 println(::x.name)
}

The expression ::x evaluates to a property object of type KProperty<Int> , which allows us

to read its value using get() or retrieve the property name using the name property. For more

information, please refer to the docs on the KProperty class.

For a mutable property, e.g. var y = 1 , ::y returns a value of type

KMutableProperty<Int>, which has a set() method:

var y = 1

fun main() {
 ::y.set(2)
 println(y)
}

A property reference can be used where a function with one parameter is expected:

val strs = listOf("a", "bc", "def")
println(strs.map(String::length))

To access a property that is a member of a class, we qualify it:

class A(val p: Int)
val prop = A::p
println(prop.get(A(1)))

For an extension property:

val String.lastChar: Char
 get() = this[length - 1]

fun main() {
 println(String::lastChar.get("abc"))
}

Property References

Interoperability With Java Re ection

288

On the Java platform, standard library contains extensions for re ection classes that provide a
mapping to and from Java re ection objects (see package kotlin.reflect.jvm). For example,

to nd a backing eld or a Java method that serves as a getter for a Kotlin property, you can say
something like this:

import kotlin.reflect.jvm.*

class A(val p: Int)

fun main() {
 println(A::p.javaGetter) // prints "public final int A.getP()"
 println(A::p.javaField) // prints "private final int A.p"
}

To get the Kotlin class corresponding to a Java class, use the .kotlin extension property:

fun getKClass(o: Any): KClass<Any> = o.javaClass.kotlin

Constructors can be referenced just like methods and properties. They can be used wherever an
object of function type is expected that takes the same parameters as the constructor and
returns an object of the appropriate type. Constructors are referenced by using the :: operator

and adding the class name. Consider the following function that expects a function parameter
with no parameters and return type Foo :

class Foo

fun function(factory: () -> Foo) {
 val x: Foo = factory()
}

Using ::Foo , the zero-argument constructor of the class Foo, we can simply call it like this:

function(::Foo)

Callable references to constructors are typed as one of the KFunction<out R> subtypes ,

depending on the parameter count.

You can refer to an instance method of a particular object:

val numberRegex = "\\d+".toRegex()
println(numberRegex.matches("29"))

val isNumber = numberRegex::matches
println(isNumber("29"))

Constructor References

Bound Function and Property References (since 1.1)

289

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-function/index.html

Instead of calling the method matches directly we are storing a reference to it. Such reference

is bound to its receiver. It can be called directly (like in the example above) or used whenever an
expression of function type is expected:

val numberRegex = "\\d+".toRegex()
val strings = listOf("abc", "124", "a70")
println(strings.filter(numberRegex::matches))

Compare the types of bound and the corresponding unbound references. Bound callable
reference has its receiver "attached" to it, so the type of the receiver is no longer a parameter:

val isNumber: (CharSequence) -> Boolean = numberRegex::matches

val matches: (Regex, CharSequence) -> Boolean = Regex::matches

Property reference can be bound as well:

val prop = "abc"::length
println(prop.get())

Since Kotlin 1.2, explicitly specifying this as the receiver is not necessary: this::foo and

::foo are equivalent.

A bound callable reference to a constructor of an inner class can be obtained by providing an

instance of the outer class:

class Outer {
 inner class Inner
}

val o = Outer()
val boundInnerCtor = o::Inner

Bound constructor references

290

The Kotlin standard library contains several functions whose sole purpose is to execute a block of
code within the context of an object. When you call such a function on an object with a lambda
expression provided, it forms a temporary scope. In this scope, you can access the object without
its name. Such functions are called scope functions. There are ve of them: let , run , with ,

apply , and also .

Basically, these functions do the same: execute a block of code on an object. What's di erent is
how this object becomes available inside the block and what is the result of the whole
expression.

Here's a typical usage of a scope function:

Person("Alice", 20, "Amsterdam").let {
 println(it)
 it.moveTo("London")
 it.incrementAge()
 println(it)
}

If you write the same without let , you'll have to introduce a new variable and repeat its name

whenever you use it.

val alice = Person("Alice", 20, "Amsterdam")
println(alice)
alice.moveTo("London")
alice.incrementAge()
println(alice)

The scope functions do not introduce any new technical capabilities, but they can make your code
more concise and readable.

Due to the similar nature of scope functions, choosing the right one for your case can be a bit
tricky. The choice mainly depends on your intent and the consistency of use in your project.
Below we'll provide detailed descriptions of the distinctions between scope functions and the
conventions on their usage.

Because the scope functions are all quite similar in nature, it's important to understand the
di erences between them. There are two main di erences between each scope function:

The way to refer to the context object

The return value.

Scope Functions

Distinctions

—

—

Context object: this or it

291

Inside the lambda of a scope function, the context object is available by a short reference instead
of its actual name. Each scope function uses one of two ways to access the context object: as a
lambda receiver (this) or as a lambda argument (it). Both provide the same capabilities, so

we'll describe the pros and cons of each for di erent cases and provide recommendations on
their use.

fun main() {
 val str = "Hello"
 // this
 str.run {
 println("The receiver string length: $length")
 //println("The receiver string length: ${this.length}") // does the same
 }

 // it
 str.let {
 println("The receiver string's length is ${it.length}")
 }
}

run , with , and apply refer to the context object as a lambda receiver - by keyword this .

Hence, in their lambdas, the object is available as it would be in ordinary class functions. In most
cases, you can omit this when accessing the members of the receiver object, making the code

shorter. On the other hand, if this is omitted, it can be hard to distinguish between the

receiver members and external objects or functions. So, having the context object as a receiver
(this) is recommended for lambdas that mainly operate on the object members: call its

functions or assign properties.

val adam = Person("Adam").apply {
 age = 20 // same as this.age = 20 or adam.age = 20
 city = "London"
}

In turn, let and also have the context object as a lambda argument. If the argument name is

not speci ed, the object is accessed by the implicit default name it . it is shorter than this

and expressions with it are usually easier for reading. However, when calling the object

functions or properties you don't have the object available implicitly like this . Hence, having

the context object as it is better when the object is mostly used as an argument in function

calls. it is also better if you use multiple variables in the code block.

this

it

292

fun getRandomInt(): Int {
 return Random.nextInt(100).also {
 writeToLog("getRandomInt() generated value $it")
 }
}

val i = getRandomInt()

Additionally, when you pass the context object as an argument, you can provide a custom name
for the context object inside the scope.

fun getRandomInt(): Int {
 return Random.nextInt(100).also { value ->
 writeToLog("getRandomInt() generated value $value")
 }
}

val i = getRandomInt()

The scope functions di er by the result they return:

apply and also return the context object.

let , run , and with return the lambda result.

These two options let you choose the proper function depending on what you do next in your
code.

The return value of apply and also is the context object itself. Hence, they can be included

into call chains as side steps: you can continue chaining function calls on the same object after
them.

val numberList = mutableListOf<Double>()
numberList.also { println("Populating the list") }
 .apply {
 add(2.71)
 add(3.14)
 add(1.0)
 }
 .also { println("Sorting the list") }
 .sort()

They also can be used in return statements of functions returning the context object.

fun getRandomInt(): Int {
 return Random.nextInt(100).also {
 writeToLog("getRandomInt() generated value $it")
 }
}

val i = getRandomInt()

Return value

—

—

Context object

293

let , run , and with return the lambda result. So, you can use them when assigning the result

to a variable, chaining operations on the result, and so on.

val numbers = mutableListOf("one", "two", "three")
val countEndsWithE = numbers.run {
 add("four")
 add("five")
 count { it.endsWith("e") }
}
println("There are $countEndsWithE elements that end with e.")

Additionally, you can ignore the return value and use a scope function to create a temporary
scope for variables.

val numbers = mutableListOf("one", "two", "three")
with(numbers) {
 val firstItem = first()
 val lastItem = last()
 println("First item: $firstItem, last item: $lastItem")
}

To help you choose the right scope function for your case, we'll describe them in detail and
provide usage recommendations. Technically, functions are interchangeable in many cases, so
the examples show the conventions that de ne the common usage style.

The context object is available as an argument (it). The return value is the lambda result.

let can be used to invoke one or more functions on results of call chains. For example, the

following code prints the results of two operations on a collection:

val numbers = mutableListOf("one", "two", "three", "four", "five")
val resultList = numbers.map { it.length }.filter { it > 3 }
println(resultList)

With let , you can rewrite it:

val numbers = mutableListOf("one", "two", "three", "four", "five")
numbers.map { it.length }.filter { it > 3 }.let {
 println(it)
 // and more function calls if needed
}

If the code block contains a single function with it as an argument, you can use the method

reference (::) instead of the lambda:

val numbers = mutableListOf("one", "two", "three", "four", "five")
numbers.map { it.length }.filter { it > 3 }.let(::println)

Lambda result

Functions

let

294

let is often used for executing a code block only with non-null values. To perform actions on a

non-null object, use the safe call operator ?. on it and call let with the actions in its lambda.

val str: String? = "Hello"
//processNonNullString(str) // compilation error: str can be null
val length = str?.let {
 println("let() called on $it")
 processNonNullString(it) // OK: 'it' is not null inside '?.let { }'
 it.length
}

Another case for using let is introducing local variables with a limited scope for improving code

readability. To de ne a new variable for the context object, provide its name as the lambda
argument so that it can be used instead of the default it .

val numbers = listOf("one", "two", "three", "four")
val modifiedFirstItem = numbers.first().let { firstItem ->
 println("The first item of the list is '$firstItem'")
 if (firstItem.length >= 5) firstItem else "!" + firstItem + "!"
}.toUpperCase()
println("First item after modifications: '$modifiedFirstItem'")

A non-extension function: the context object is passed as an argument, but inside the lambda,
it's available as a receiver (this). The return value is the lambda result.

We recommend with for calling functions on the context object without providing the lambda

result. In the code, with can be read as “with this object, do the following.”

val numbers = mutableListOf("one", "two", "three")
with(numbers) {
 println("'with' is called with argument $this")
 println("It contains $size elements")
}

Another use case for with is introducing a helper object whose properties or functions will be

used for calculating a value.

val numbers = mutableListOf("one", "two", "three")
val firstAndLast = with(numbers) {
 "The first element is ${first()}," +
 " the last element is ${last()}"
}
println(firstAndLast)

The context object is available as a receiver (this). The return value is the lambda result.

with

run

295

run does the same as with but invokes as let - as an extension function of the context

object.

run is useful when your lambda contains both the object initialization and the computation of

the return value.

val service = MultiportService("https://example.kotlinlang.org", 80)

val result = service.run {
 port = 8080
 query(prepareRequest() + " to port $port")
}

// the same code written with let() function:
val letResult = service.let {
 it.port = 8080
 it.query(it.prepareRequest() + " to port ${it.port}")
}

Besides calling run on a receiver object, you can use it as a non-extension function. Non-

extension run lets you execute a block of several statements where an expression is required.

val hexNumberRegex = run {
 val digits = "0-9"
 val hexDigits = "A-Fa-f"
 val sign = "+-"

 Regex("[$sign]?[$digits$hexDigits]+")
}

for (match in hexNumberRegex.findAll("+1234 -FFFF not-a-number")) {
 println(match.value)
}

The context object is available as a receiver (this). The return value is the object itself.

Use apply for code blocks that don't return a value and mainly operate on the members of the

receiver object. The common case for apply is the object con guration. Such calls can be read

as “apply the following assignments to the object.”

val adam = Person("Adam").apply {
 age = 32
 city = "London"
}

Having the receiver as the return value, you can easily include apply into call chains for more

complex processing.

apply

also

296

The context object is available as an argument (it). The return value is the object itself.

also is good for performing some actions that take the context object as an argument. Use

also for additional actions that don't alter the object, such as logging or printing debug

information. Usually, you can remove the calls of also from the call chain without breaking the

program logic.

When you see also in the code, you can read it as “and also do the following”.

val numbers = mutableListOf("one", "two", "three")
numbers
 .also { println("The list elements before adding new one: $it") }
 .add("four")

To help you choose the right scope function for your purpose, we provide the table of key
di erences between them.

Function Object reference Return value Is extension function
let it Lambda result Yes
run this Lambda result Yes
run - Lambda result No: called without the context object
with this Lambda result No: takes the context object as an argument.
apply this Context object Yes
also it Context object Yes

Here is a short guide for choosing scope functions depending on the intended purpose:

Executing a lambda on non-null objects: let

Introducing an expression as a variable in local scope: let

Object con guration: apply

Object con guration and computing the result: run

Running statements where an expression is required: non-extension run

Additional e ects: also

Grouping function calls on an object: with

The use cases of di erent functions overlap, so that you can choose the functions based on the
speci c conventions used in your project or team.

Although the scope functions are a way of making the code more concise, avoid overusing them:
it can decrease your code readability and lead to errors. Avoid nesting scope functions and be
careful when chaining them: it's easy to get confused about the current context object and the
value of this or it .

Function selection

—

—

—

—

—

—

—

297

In addition to scope functions, the standard library contains the functions takeIf and

takeUnless . These functions let you embed checks of the object state in call chains.

When called on an object with a predicate provided, takeIf returns this object if it matches the

predicate. Otherwise, it returns null . So, takeIf is a ltering function for a single object. In

turn, takeUnless returns the object if it doesn't match the predicate and null if it does. The

object is available as a lambda argument (it).

val number = Random.nextInt(100)

val evenOrNull = number.takeIf { it % 2 == 0 }
val oddOrNull = number.takeUnless { it % 2 == 0 }
println("even: $evenOrNull, odd: $oddOrNull")

When chaining other functions after takeIf and takeUnless , don't forget to perform the null

check or the safe call (?.) because their return value is nullable.

val str = "Hello"
val caps = str.takeIf { it.isNotEmpty() }?.toUpperCase()
/val caps = str.takeIf { it.isNotEmpty() }.toUpperCase() //compilation error
println(caps)

takeIf and takeUnless are especially useful together with scope functions. A good case is

chaining them with let for running a code block on objects that match the given predicate. To

do this, call takeIf on the object and then call let with a safe call (?). For objects that don't

match the predicate, takeIf returns null and let isn't invoked.

fun displaySubstringPosition(input: String, sub: String) {
 input.indexOf(sub).takeIf { it >= 0 }?.let {
 println("The substring $sub is found in $input.")
 println("Its start position is $it.")
 }
}

displaySubstringPosition("010000011", "11")
displaySubstringPosition("010000011", "12")

This is how the same function looks without the standard library functions:

fun displaySubstringPosition(input: String, sub: String) {
 val index = input.indexOf(sub)
 if (index >= 0) {
 println("The substring $sub is found in $input.")
 println("Its start position is $index.")
 }
}

displaySubstringPosition("010000011", "11")
displaySubstringPosition("010000011", "12")

takeIf and takeUnless

298

By using well-named functions as builders in combination with function literals with receiver it is
possible to create type-safe, statically-typed builders in Kotlin.

Type-safe builders allow creating Kotlin-based domain-speci c languages (DSLs) suitable for
building complex hierarchical data structures in a semi-declarative way. Some of the example use
cases for the builders are:

Generating markup with Kotlin code, such as HTML or XML;

Programmatically laying out UI components: Anko

Con guring routes for a web server: Ktor.

Consider the following code:

import com.example.html.* // see declarations below

fun result() =
 html {
 head {
 title {+"XML encoding with Kotlin"}
 }
 body {
 h1 {+"XML encoding with Kotlin"}
 p {+"this format can be used as an alternative markup to XML"}

 // an element with attributes and text content
 a(href = "http://kotlinlang.org") {+"Kotlin"}

 // mixed content
 p {
 +"This is some"
 b {+"mixed"}
 +"text. For more see the"

Type-Safe Builders

—

—

—

A type-safe builder example

299

https://github.com/Kotlin/kotlinx.html
https://github.com/Kotlin/anko/wiki/Anko-Layouts
http://ktor.io/features/routing.html#routing-tree

 +"text. For more see the"
 a(href = "http://kotlinlang.org") {+"Kotlin"}
 +"project"
 }
 p {+"some text"}

 // content generated by
 p {
 for (arg in args)
 +arg
 }
 }
 }

This is completely legitimate Kotlin code. You can play with this code online (modify it and run in
the browser) here.

Let's walk through the mechanisms of implementing type-safe builders in Kotlin. First of all, we
need to de ne the model we want to build, in this case we need to model HTML tags. It is easily
done with a bunch of classes. For example, HTML is a class that describes the <html> tag, i.e. it

de nes children like <head> and <body> . (See its declaration below.)

Now, let's recall why we can say something like this in the code:

html {
 // ...
}

html is actually a function call that takes a lambda expression as an argument. This function is

de ned as follows:

fun html(init: HTML.() -> Unit): HTML {
 val html = HTML()
 html.init()
 return html
}

This function takes one parameter named init , which is itself a function. The type of the

function is HTML.() -> Unit , which is a function type with receiver. This means that we need to

pass an instance of type HTML (a receiver) to the function, and we can call members of that

instance inside the function. The receiver can be accessed through the this keyword:

html {
 this.head { ... }
 this.body { ... }
}

(head and body are member functions of HTML .)

Now, this can be omitted, as usual, and we get something that looks very much like a builder

already:

How it works

300

https://play.kotlinlang.org/byExample/09_Kotlin_JS/06_HtmlBuilder

html {
 head { ... }
 body { ... }
}

So, what does this call do? Let's look at the body of html function as de ned above. It creates a

new instance of HTML , then it initializes it by calling the function that is passed as an argument

(in our example this boils down to calling head and body on the HTML instance), and then it

returns this instance. This is exactly what a builder should do.

The head and body functions in the HTML class are de ned similarly to html . The only

di erence is that they add the built instances to the children collection of the enclosing HTML

instance:

fun head(init: Head.() -> Unit) : Head {
 val head = Head()
 head.init()
 children.add(head)
 return head
}

fun body(init: Body.() -> Unit) : Body {
 val body = Body()
 body.init()
 children.add(body)
 return body
}

Actually these two functions do just the same thing, so we can have a generic version, initTag :

protected fun <T : Element> initTag(tag: T, init: T.() -> Unit): T {
 tag.init()
 children.add(tag)
 return tag
}

So, now our functions are very simple:

fun head(init: Head.() -> Unit) = initTag(Head(), init)

fun body(init: Body.() -> Unit) = initTag(Body(), init)

And we can use them to build <head> and <body> tags.

One other thing to be discussed here is how we add text to tag bodies. In the example above we
say something like:

html {
 head {
 title {+"XML encoding with Kotlin"}
 }
 // ...
}

301

So basically, we just put a string inside a tag body, but there is this little + in front of it, so it is a

function call that invokes a pre x unaryPlus() operation. That operation is actually de ned by

an extension function unaryPlus() that is a member of the TagWithText abstract class (a

parent of Title):

operator fun String.unaryPlus() {
 children.add(TextElement(this))
}

So, what the pre x + does here is wrapping a string into an instance of TextElement and

adding it to the children collection, so that it becomes a proper part of the tag tree.

All this is de ned in a package com.example.html that is imported at the top of the builder

example above. In the last section you can read through the full de nition of this package.

When using DSLs, one might have come across the problem that too many functions can be
called in the context. We can call methods of every available implicit receiver inside a lambda and
therefore get an inconsistent result, like the tag head inside another head :

html {
 head {
 head {} // should be forbidden
 }
 // ...
}

In this example only members of the nearest implicit receiver this@head must be available;

head() is a member of the outer receiver this@html , so it must be illegal to call it.

To address this problem, in Kotlin 1.1 a special mechanism to control receiver scope was
introduced.

To make the compiler start controlling scopes we only have to annotate the types of all receivers
used in the DSL with the same marker annotation. For instance, for HTML Builders we declare an
annotation @HTMLTagMarker :

@DslMarker
annotation class HtmlTagMarker

An annotation class is called a DSL marker if it is annotated with the @DslMarker annotation.

In our DSL all the tag classes extend the same superclass Tag . It's enough to annotate only the

superclass with @HtmlTagMarker and after that the Kotlin compiler will treat all the inherited

classes as annotated:

@HtmlTagMarker
abstract class Tag(val name: String) { ... }

Scope control: @DslMarker (since 1.1)

302

We don't have to annotate the HTML or Head classes with @HtmlTagMarker because their

superclass is already annotated:

class HTML() : Tag("html") { ... }
class Head() : Tag("head") { ... }

After we've added this annotation, the Kotlin compiler knows which implicit receivers are part of
the same DSL and allows to call members of the nearest receivers only:

html {
 head {
 head { } // error: a member of outer receiver
 }
 // ...
}

Note that it's still possible to call the members of the outer receiver, but to do that you have to
specify this receiver explicitly:

html {
 head {
 this@html.head { } // possible
 }
 // ...
}

This is how the package com.example.html is de ned (only the elements used in the example

above). It builds an HTML tree. It makes heavy use of extension functions and lambdas with
receiver.

Note that the @DslMarker annotation is available only since Kotlin 1.1.

package com.example.html

interface Element {
 fun render(builder: StringBuilder, indent: String)
}

class TextElement(val text: String) : Element {
 override fun render(builder: StringBuilder, indent: String) {
 builder.append("$indent$text\n")
 }
}

@DslMarker
annotation class HtmlTagMarker

@HtmlTagMarker
abstract class Tag(val name: String) : Element {
 val children = arrayListOf<Element>()
 val attributes = hashMapOf<String, String>()

Full de nition of the com.example.html package

303

 protected fun <T : Element> initTag(tag: T, init: T.() -> Unit): T {
 tag.init()
 children.add(tag)
 return tag
 }

 override fun render(builder: StringBuilder, indent: String) {
 builder.append("$indent<$name${renderAttributes()}>\n")
 for (c in children) {
 c.render(builder, indent + " ")
 }
 builder.append("$indent</$name>\n")
 }

 private fun renderAttributes(): String {
 val builder = StringBuilder()
 for ((attr, value) in attributes) {
 builder.append(" $attr=\"$value\"")
 }
 return builder.toString()
 }

 override fun toString(): String {
 val builder = StringBuilder()
 render(builder, "")
 return builder.toString()
 }
}

abstract class TagWithText(name: String) : Tag(name) {
 operator fun String.unaryPlus() {
 children.add(TextElement(this))
 }
}

class HTML : TagWithText("html") {
 fun head(init: Head.() -> Unit) = initTag(Head(), init)

 fun body(init: Body.() -> Unit) = initTag(Body(), init)
}

class Head : TagWithText("head") {
 fun title(init: Title.() -> Unit) = initTag(Title(), init)
}

class Title : TagWithText("title")

abstract class BodyTag(name: String) : TagWithText(name) {
 fun b(init: B.() -> Unit) = initTag(B(), init)
 fun p(init: P.() -> Unit) = initTag(P(), init)
 fun h1(init: H1.() -> Unit) = initTag(H1(), init)
 fun a(href: String, init: A.() -> Unit) {
 val a = initTag(A(), init)
 a.href = href
 }
}

class Body : BodyTag("body")
class B : BodyTag("b")
class P : BodyTag("p")
class H1 : BodyTag("h1")

304

class H1 : BodyTag("h1")

class A : BodyTag("a") {
 var href: String
 get() = attributes["href"]!!
 set(value) {
 attributes["href"] = value
 }
}

fun html(init: HTML.() -> Unit): HTML {
 val html = HTML()
 html.init()
 return html
}

305

The annotations for marking and using experimental APIs (@Experimental and

@UseExperimental) are experimental in Kotlin 1.3. See details below.

The Kotlin standard library provides developers with a mechanism for creating and using
experimental APIs. This mechanism lets library authors inform users that certain components of
their API, such as classes or functions, are unstable and are likely to change in the future. Such
changes may require rewriting and recompiling the client code. To prevent potential
compatibility issues, the compiler warns users of the experimental status of such APIs and may
require them to give their explicit consent to use the API.

If a class or a function from a library is marked by its author as experimental, using it in your
code will produce warnings or compilation errors unless you explicitly accept their experimental
status. There are several ways to accept the experimental status of API elements; all of them are
applicable without technical limitations. You are free to choose the way that you nd best for
your situation.

When you use an experimental API in the code intended for third-party use (a library), you can
mark your API as experimental as well. To do this, annotate your declaration with the
experimental marker annotation of the API used in its body. This enables you to use the API
elements annotated with this marker.

// library code
@Experimental
@Retention(AnnotationRetention.BINARY)
@Target(AnnotationTarget.CLASS, AnnotationTarget.FUNCTION)
annotation class ExperimentalDateTime // Experimental API marker

@ExperimentalDateTime
class DateProvider // Experimental class

Experimental API Markers

Using experimental APIs

Propagating use

306

// client code
fun getYear(): Int {
 val dateProvider: DateProvider // error: DateProvider is experimental
 // ...
}

@ExperimentalDateTime
fun getDate(): Date {
 val dateProvider: DateProvider // OK: the function is marked as experimental
 // ...
}

fun displayDate() {
 println(getDate()) // error: getDate() is experimental, acceptance is required
}

As you can see in this example, the annotated function appears to be a part of the
@ExperimentalDateTime experimental API. So, the described way of acceptance propagates

the experimental status to the code that uses an experimental API; its clients will be required to
accept it as well. To use multiple experimental APIs, annotate the declaration with all their
markers.

In modules that don't provide their own API, such as application modules, you can use
experimental APIs without propagating the experimental status to your code. In this case, mark
your code with the @UseExperimental(Marker::class) annotation specifying the marker
annotation of the experimental API:

// library code
@Experimental
@Retention(AnnotationRetention.BINARY)
@Target(AnnotationTarget.CLASS, AnnotationTarget.FUNCTION)
annotation class ExperimentalDateTime // Experimental API marker

@ExperimentalDateTime
class DateProvider // Experimental class

//client code
@UseExperimental(ExperimentalDateTime::class)
fun getDate(): Date { // uses DateProvider; doesn't expose the experimental
status
 val dateProvider: DateProvider
 // ...
}

fun displayDate() {
 println(getDate()) // OK: getDate() is not experimental
}

When somebody calls the function getDate() , they won't be informed about the experimental

API used in its body.

Non-propagating use

307

To use an experimental API in all functions and classes in a le, add the le-level annotation
@file:UseExperimental to the top of the le before the package speci cation and imports.

 //client code
 @file:UseExperimental(ExperimentalDateTime::class)

If you don't want to annotate every usage of experimental APIs in your code, you can accept the
experimental status for your whole module. Module-wide use of experimental APIs can be
propagating and non-propagating as well:

To accept the experimental status without propagation, compile the module with the
argument -Xuse-experimental , specifying the fully quali ed name of the experimental

API marker you use: -Xuse-experimental=org.mylibrary.ExperimentalMarker .

Compiling with this argument has the same e ect as if every declaration in the module had
the annotation @UseExperimental(ExperimentalMarker::class) .

To accept and propagate the experimental status to your whole module, compile the module
with the argument -Xexperimental=org.mylibrary.ExperimentalMarker . In this

case, every declaration in the module becomes experimental. The use of the module requires
the acceptance of its experimental status as well.

If you build your module with Gradle, you can add arguments like this:

compileKotlin {
 kotlinOptions {
 freeCompilerArgs += "-Xuse-experimental=org.mylibrary.ExperimentalMarker"
 }
}

tasks.withType<KotlinCompile>().all {
 kotlinOptions.freeCompilerArgs += "-Xuse-
experimental=org.mylibrary.ExperimentalMarker"
}

If your Gradle module is a multiplatform module, use the useExperimentalAnnotation

method:

sourceSets {
 all {
 languageSettings {
 useExperimentalAnnotation('kotlin.Experimental')
 }
 }
}

Module-wide use

—

—

308

sourceSets {
 all {
 languageSettings.useExperimentalAnnotation("kotlin.Experimental")
 }
}

For Maven, it would be:

<build>
 <plugins>
 <plugin>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-plugin</artifactId>
 <version>${kotlin.version}</version>
 <executions>...</executions>
 <configuration>
 <args>
 <arg>-Xuse-experimental=org.mylibrary.ExperimentalMarker</arg>
 </args>
 </configuration>
 </plugin>
 </plugins>
</build>

To accept the usage of multiple experimental APIs on the module level, add one of the described
arguments for each experimental API marker used in your module.

If you want to declare your module's API as experimental, create an annotation class to use as its
experimental marker. This class must be annotated with @Experimental:

@Experimental
@Retention(AnnotationRetention.BINARY)
@Target(AnnotationTarget.CLASS, AnnotationTarget.FUNCTION)
annotation class ExperimentalDateTime

Experimental marker annotations must meet several requirements:

BINARY retention

No EXPRESSION and FILE among targets

No parameters.

A marker annotation can have one of two severity levels of informing about experimental API
usage:

Experimental.Level.ERROR . Acceptance is mandatory. Otherwise, the code that uses

marked API won't compile. This level is used by default.

Experimental.Level.WARNING . Acceptance is not mandatory, but advisable. Without it,

Marking experimental API

Creating marker annotations

—

—

—

—

—

309

the compiler raises a warning. To set the desired level, specify the level parameter of the

@Experimental annotation.

@Experimental(level = Experimental.Level.WARNING)
@Retention(AnnotationRetention.BINARY)
@Target(AnnotationTarget.CLASS, AnnotationTarget.FUNCTION)
annotation class ExperimentalDateTime

If you publish several features in the experimental state, declare a marker for each. Separate
markers make the use of experimental features safer for your clients: they'll be able to use only
the features that they explicitly accept. This also lets you graduate the features to stable
independently.

To mark an API element as experimental, annotate its declaration with your experimental marker
annotation:

@ExperimentalDateTime
class DateProvider

@ExperimentalDateTime
fun getTime(): Time {}

If you consider all the APIs of your module experimental, you can mark the entire module as such
with the compiler argument -Xexperimental as described in Module-wide use.

Once your experimental API graduates and is released in its nal state, remove its marker
annotation from declarations so that the clients can use it without restriction. However, you
should leave the marker classes in modules so that the existing client code remains compatible.
To let the API users update their modules accordingly (remove the markers from their code and
recompile), mark the annotations as @Deprecated and provide the explanation in its message.

@Deprecated("This experimental API marker is not used anymore. Remove its usages from
your code.")
@Experimental
annotation class ExperimentalDateTime

Marking API elements

Module-wide markers

Graduation of experimental API

Experimental status of experimental API markers

310

The described mechanism for marking and using experimental APIs is itself experimental in
Kotlin 1.3. This means that in future releases it may be changed in ways that make it
incompatible. To make the users of annotations @Experimental and UseExperimental

aware of their experimental status, the compiler raises warnings when compiling the code with
these annotations:

This class can only be used with the compiler argument '-Xuse-

experimental=kotlin.Experimental'

To remove the warnings, add the compiler argument -Xuse-

experimental=kotlin.Experimental .

311

Reference

The following tokens are always interpreted as keywords and cannot be used as identi ers:

as

is used for type casts

speci es an alias for an import

as? is used for safe type casts

break terminates the execution of a loop

class declares a class

continue proceeds to the next step of the nearest enclosing loop

do begins a do/while loop (loop with postcondition)

else de nes the branch of an if expression which is executed when the condition is false

false speci es the 'false' value of the Boolean type

for begins a for loop

fun declares a function

if begins an if expression

in

speci es the object being iterated in a for loop

is used as an in x operator to check that a value belongs to a range, a collection or another
entity that de nes the 'contains' method

is used in when expressions for the same purpose

marks a type parameter as contravariant

!in

is used as an operator to check that a value does NOT belong to a range, a collection or
another entity that de nes the 'contains' method

is used in when expressions for the same purpose

Keywords and Operators

Hard Keywords

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

312

http://kotlinlang.org/docs/reference/returns.html

interface declares an interface

is

checks that a value has a certain type

is used in when expressions for the same purpose

!is

checks that a value does NOT have a certain type

is used in when expressions for the same purpose

null is a constant representing an object reference that doesn't point to any object

object declares a class and its instance at the same time

package speci es the package for the current le

return returns from the nearest enclosing function or anonymous function

super

refers to the superclass implementation of a method or property

calls the superclass constructor from a secondary constructor

this

refers to the current receiver

calls another constructor of the same class from a secondary constructor

throw throws an exception

true speci es the 'true' value of the Boolean type

try begins an exception handling block

typealias declares a type alias

typeof reserved for future use

val declares a read-only property or local variable

var declares a mutable property or local variable

when begins a when expression (executes one of the given branches)

while begins a while loop (loop with precondition)

The following tokens act as keywords in the context when they are applicable and can be used as
identi ers in other contexts:

by

delegates the implementation of an interface to another object

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—
—

Soft Keywords

—

—

313

http://kotlinlang.org/docs/reference/classes.html#constructors

delegates the implementation of accessors for a property to another object

catch begins a block that handles a speci c exception type

constructor declares a primary or secondary constructor

delegate is used as an annotation use-site target

dynamic references a dynamic type in Kotlin/JS code

field is used as an annotation use-site target

file is used as an annotation use-site target

finally begins a block that is always executed when a try block exits

get

declares the getter of a property

is used as an annotation use-site target

import imports a declaration from another package into the current le

init begins an initializer block

param is used as an annotation use-site target

property is used as an annotation use-site target

receiver is used as an annotation use-site target

set

declares the setter of a property

is used as an annotation use-site target

setparam is used as an annotation use-site target

where speci es constraints for a generic type parameter

The following tokens act as keywords in modi er lists of declarations and can be used as
identi ers in other contexts:

actual denotes a platform-speci c implementation in multiplatform projects

abstract marks a class or member as abstract

annotation declares an annotation class

companion declares a companion object

const marks a property as a compile-time constant

crossinline forbids non-local returns in a lambda passed to an inline function

data instructs the compiler to generate canonical members for a class

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

Modi er Keywords

—

—

—

—

—

—

—

314

enum declares an enumeration

expect marks a declaration as platform-speci c, expecting an implementation in platform

modules.

external marks a declaration as implemented not in Kotlin (accessible through JNI or in

JavaScript)

final forbids overriding a member

infix allows calling a function in in x notation

inline tells the compiler to inline the function and the lambdas passed to it at the call site

inner allows referring to the outer class instance from a nested class

internal marks a declaration as visible in the current module

lateinit allows initializing a non-null property outside of a constructor

noinline turns o inlining of a lambda passed to an inline function

open allows subclassing a class or overriding a member

operator marks a function as overloading an operator or implementing a convention

out marks a type parameter as covariant

override marks a member as an override of a superclass member

private marks a declaration as visible in the current class or le

protected marks a declaration as visible in the current class and its subclasses

public marks a declaration as visible anywhere

reified marks a type parameter of an inline function as accessible at runtime

sealed declares a sealed class (a class with restricted subclassing)

suspend marks a function or lambda as suspending (usable as a coroutine)

tailrec marks a function as tail-recursive (allowing the compiler to replace recursion with

iteration)

vararg allows passing a variable number of arguments for a parameter

The following identi ers are de ned by the compiler in speci c contexts and can be used as
regular identi ers in other contexts:

field is used inside a property accessor to refer to the backing eld of the property

it is used inside a lambda to refer to its parameter implicitly

Kotlin supports the following operators and special symbols:

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

Special Identi ers

—

—

Operators and Special Symbols

315

+ , - , * , / , % - mathematical operators

* is also used to pass an array to a vararg parameter

=

assignment operator

is used to specify default values for parameters

+= , -= , *= , /= , %= - augmented assignment operators

++ , -- - increment and decrement operators

&& , || , ! - logical 'and', 'or', 'not' operators (for bitwise operations, use corresponding in x

functions)

== , != - equality operators (translated to calls of equals() for non-primitive types)

=== , !== - referential equality operators

< , > , <= , >= - comparison operators (translated to calls of compareTo() for non-primitive

types)

[,] - indexed access operator (translated to calls of get and set)

!! asserts that an expression is non-null

?. performs a safe call (calls a method or accesses a property if the receiver is non-null)

?: takes the right-hand value if the left-hand value is null (the elvis operator)

:: creates a member reference or a class reference

.. creates a range

: separates a name from a type in declarations

? marks a type as nullable

->

separates the parameters and body of a lambda expression

separates the parameters and return type declaration in a function type

separates the condition and body of a when expression branch

@

introduces an annotation

introduces or references a loop label

introduces or references a lambda label

references a 'this' expression from an outer scope

references an outer superclass

; separates multiple statements on the same line

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

316

http://kotlinlang.org/docs/reference/null-safety.html#elvis-operator
http://kotlinlang.org/docs/reference/control-flow.html#when-expression

$ references a variable or expression in a string template

_

substitutes an unused parameter in a lambda expression

substitutes an unused parameter in a destructuring declaration

—

—

—

—

317

http://kotlinlang.org/docs/reference/multi-declarations.html#underscore-for-unused-variables-since-11

The notation used on this page corresponds to the ANTLR 4 notation with a few exceptions for
better readability:

omitted lexer rule actions and commands,

omitted lexical modes.

Short description:

operator | denotes alternative,

operator * denotes iteration (zero or more),

operator + denotes iteration (one or more),

operator ? denotes option (zero or one),

operator .. denotes range (from left to right),

operator ~ denotes negation.

Kotlin grammar source les (in ANTLR format) are located in the Kotlin speci cation repository:

KotlinLexer.g4 describes lexical structure;

UnicodeClasses.g4 describes the characters that can be used in identi ers (these rules are
omitted on this page for better readability);

KotlinParser.g4 describes syntax.

The grammar on this page corresponds to the grammar les above.

Terminal symbol names start with an uppercase letter, e.g. Identi er.
Non-terminal symbol names start with a lowercase letter, e.g. kotlinFile.

Symbol de nitions may be documented with attributes:

start attribute denotes a symbol that represents the whole source le (see kotlinFile and

script),

helper attribute denotes a lexer fragment rule (used only inside other terminal symbols).

Also for better readability some simpli cations are made:

Grammar

Description

Notation

—

—

—

—

—

—

—

—

Grammar source les

—

—

—

Symbols and naming

—

—

318

https://github.com/Kotlin/kotlin-spec
https://github.com/Kotlin/kotlin-spec/tree/master/grammar/src/main/antlr/KotlinLexer.g4
https://github.com/Kotlin/kotlin-spec/tree/master/grammar/src/main/antlr/UnicodeClasses.g4
https://github.com/Kotlin/kotlin-spec/tree/master/grammar/src/main/antlr/KotlinParser.g4

lexer rules consisting of one string literal element are inlined to the use site,

new line tokens are excluded (new lines are not allowed in some places, see source grammar
les for details).

The grammar corresponds to the latest stable version of the Kotlin compiler excluding lexer and
parser rules for experimental features that are disabled by default.

Relevant pages: Packages

start
kotlinFile
 : shebangLine? fileAnnotation* packageHeader importList topLevelObject* EOF
 ;
start
script
 : shebangLine? fileAnnotation* packageHeader importList (statement semi)* EOF
 ;
shebangLine
(used by kotlinFile, script)
 : ShebangLine
 ;
fileAnnotation
(used by kotlinFile, script)
 : ('@' | AT_PRE_WS) 'file' ':' (('[' unescapedAnnotation+ ']') | unescapedAnnotation)
 ;
See Packages

packageHeader
(used by kotlinFile, script)
 : ('package' identifier semi?)?
 ;
See Imports

importList
(used by kotlinFile, script)
 : importHeader*
 ;
importHeader
(used by importList)
 : 'import' identifier (('.' '*') | importAlias)? semi?
 ;
importAlias
(used by importHeader)
 : 'as' simpleIdentifier
 ;
topLevelObject
(used by kotlinFile)
 : declaration semis?
 ;
typeAlias
(used by declaration)
 : modifiers? 'typealias' simpleIdentifier typeParameters? '=' type
 ;
declaration
(used by topLevelObject, classMemberDeclaration, statement)
 : classDeclaration
 | objectDeclaration
 | functionDeclaration
 | propertyDeclaration
 | typeAlias
 ;

—

—

Scope

Syntax grammar

General

319

See Classes and Inheritance

classDeclaration
(used by declaration)
 : modifiers? ('class' | 'interface')
 simpleIdentifier typeParameters?
 primaryConstructor?
 (':' delegationSpecifiers)?
 typeConstraints?
 (classBody | enumClassBody)?
 ;
primaryConstructor
(used by classDeclaration)
 : (modifiers? 'constructor')? classParameters
 ;
classBody
(used by classDeclaration, companionObject, objectDeclaration, enumEntry, objectLiteral)
 : '{' classMemberDeclarations '}'
 ;
classParameters
(used by primaryConstructor)
 : '(' (classParameter (',' classParameter)*)? ')'
 ;
classParameter
(used by classParameters)
 : modifiers? ('val' | 'var')? simpleIdentifier ':' type ('=' expression)?
 ;
delegationSpecifiers
(used by classDeclaration, companionObject, objectDeclaration, objectLiteral)
 : annotatedDelegationSpecifier (',' annotatedDelegationSpecifier)*
 ;
delegationSpecifier
(used by annotatedDelegationSpecifier)
 : constructorInvocation
 | explicitDelegation
 | userType
 | functionType
 ;
constructorInvocation
(used by delegationSpecifier, unescapedAnnotation)
 : userType valueArguments
 ;
annotatedDelegationSpecifier
(used by delegationSpecifiers)
 : annotation* delegationSpecifier
 ;
explicitDelegation
(used by delegationSpecifier)
 : (userType | functionType) 'by' expression
 ;
See Generic classes

typeParameters
(used by typeAlias, classDeclaration, functionDeclaration, propertyDeclaration)
 : '<' typeParameter (',' typeParameter)* '>'
 ;
typeParameter
(used by typeParameters)
 : typeParameterModifiers? simpleIdentifier (':' type)?
 ;
See Generic constraints

typeConstraints
(used by classDeclaration, functionDeclaration, propertyDeclaration, anonymousFunction)
 : 'where' typeConstraint (',' typeConstraint)*
 ;
typeConstraint
(used by typeConstraints)
 : annotation* simpleIdentifier ':' type
 ;

Classes

Class members

320

classMemberDeclarations
(used by classBody, enumClassBody)
 : (classMemberDeclaration semis?)*
 ;
classMemberDeclaration
(used by classMemberDeclarations)
 : declaration
 | companionObject
 | anonymousInitializer
 | secondaryConstructor
 ;
anonymousInitializer
(used by classMemberDeclaration)
 : 'init' block
 ;
companionObject
(used by classMemberDeclaration)
 : modifiers? 'companion' 'object' simpleIdentifier?
 (':' delegationSpecifiers)?
 classBody?
 ;
functionValueParameters
(used by functionDeclaration, secondaryConstructor)
 : '(' (functionValueParameter (',' functionValueParameter)*)? ')'
 ;
functionValueParameter
(used by functionValueParameters)
 : parameterModifiers? parameter ('=' expression)?
 ;
functionDeclaration
(used by declaration)
 : modifiers? 'fun' typeParameters?
 (receiverType '.')?
 simpleIdentifier functionValueParameters
 (':' type)? typeConstraints?
 functionBody?
 ;
functionBody
(used by functionDeclaration, getter, setter, anonymousFunction)
 : block
 | '=' expression
 ;
variableDeclaration
(used by multiVariableDeclaration, propertyDeclaration, forStatement, lambdaParameter, whenSubject)
 : annotation* simpleIdentifier (':' type)?
 ;
multiVariableDeclaration
(used by propertyDeclaration, forStatement, lambdaParameter)
 : '(' variableDeclaration (',' variableDeclaration)* ')'
 ;
See Properties and Fields

propertyDeclaration
(used by declaration)
 : modifiers? ('val' | 'var') typeParameters?
 (receiverType '.')?
 (multiVariableDeclaration | variableDeclaration)
 typeConstraints?
 (('=' expression) | propertyDelegate)? ';'?
 ((getter? (semi? setter)?) | (setter? (semi? getter)?))
 ;
propertyDelegate
(used by propertyDeclaration)
 : 'by' expression
 ;
getter
(used by propertyDeclaration)
 : modifiers? 'get'
 | modifiers? 'get' '(' ')'
 (':' type)?
 functionBody
 ;
setter
(used by propertyDeclaration)
 : modifiers? 'set'
 | modifiers? 'set' '(' parameterWithOptionalType ')' (':' type)?
 functionBody
 ;
parametersWithOptionalType
(used by anonymousFunction)

321

 : '(' (parameterWithOptionalType (',' parameterWithOptionalType)*)? ')'
 ;
parameterWithOptionalType
(used by setter, parametersWithOptionalType)
 : parameterModifiers? simpleIdentifier (':' type)?
 ;
parameter
(used by functionValueParameter, functionTypeParameters)
 : simpleIdentifier ':' type
 ;
See Object expressions and Declarations

objectDeclaration
(used by declaration)
 : modifiers? 'object' simpleIdentifier (':' delegationSpecifiers)? classBody?
 ;
secondaryConstructor
(used by classMemberDeclaration)
 : modifiers? 'constructor' functionValueParameters
 (':' constructorDelegationCall)? block?
 ;
constructorDelegationCall
(used by secondaryConstructor)
 : 'this' valueArguments
 | 'super' valueArguments
 ;

See Enum classes

enumClassBody
(used by classDeclaration)
 : '{' enumEntries? (';' classMemberDeclarations)? '}'
 ;
enumEntries
(used by enumClassBody)
 : enumEntry (',' enumEntry)* ','?
 ;
enumEntry
(used by enumEntries)
 : modifiers? simpleIdentifier valueArguments? classBody?
 ;

See Types

type
(used by typeAlias, classParameter, typeParameter, typeConstraint, functionDeclaration, variableDeclaration,
getter, setter, parameterWithOptionalType, parameter, typeProjection, functionType, functionTypeParameters,
parenthesizedType, infixOperation, asExpression, lambdaParameter, anonymousFunction, superExpression,
typeTest, catchBlock)
 : typeModifiers? (parenthesizedType | nullableType | typeReference | functionType)
 ;
typeReference
(used by type, nullableType, receiverType)
 : userType
 | 'dynamic'
 ;
nullableType
(used by type, receiverType)
 : (typeReference | parenthesizedType) quest+
 ;
quest
(used by nullableType)
 : '?'
 | QUEST_WS
 ;
userType
(used by delegationSpecifier, constructorInvocation, explicitDelegation, typeReference,
parenthesizedUserType, unescapedAnnotation)
 : simpleUserType ('.' simpleUserType)*
 ;

Enum classes

Types

322

simpleUserType
(used by userType)
 : simpleIdentifier typeArguments?
 ;
typeProjection
(used by typeArguments)
 : typeProjectionModifiers? type
 | '*'
 ;
typeProjectionModifiers
(used by typeProjection)
 : typeProjectionModifier+
 ;
typeProjectionModifier
(used by typeProjectionModifiers)
 : varianceModifier
 | annotation
 ;
functionType
(used by delegationSpecifier, explicitDelegation, type)
 : (receiverType '.')? functionTypeParameters '->' type
 ;
functionTypeParameters
(used by functionType)
 : '(' (parameter | type)? (',' (parameter | type))* ')'
 ;
parenthesizedType
(used by type, nullableType, receiverType)
 : '(' type ')'
 ;
receiverType
(used by functionDeclaration, propertyDeclaration, functionType, callableReference)
 : typeModifiers? (parenthesizedType | nullableType | typeReference)
 ;
parenthesizedUserType
(used by parenthesizedUserType)
 : '(' userType ')'
 | '(' parenthesizedUserType ')'
 ;

statements
(used by block, lambdaLiteral)
 : (statement (semis statement)* semis?)?
 ;
statement
(used by script, statements, controlStructureBody)
 : (label | annotation)* (declaration | assignment | loopStatement | expression)
 ;
See Returns and jumps

label
(used by statement, unaryPrefix, annotatedLambda)
 : simpleIdentifier ('@' | AT_POST_WS)
 ;
controlStructureBody
(used by forStatement, whileStatement, doWhileStatement, ifExpression, whenEntry)
 : block
 | statement
 ;
block
(used by anonymousInitializer, functionBody, secondaryConstructor, controlStructureBody, tryExpression,
catchBlock, finallyBlock)
 : '{' statements '}'
 ;
loopStatement
(used by statement)
 : forStatement
 | whileStatement
 | doWhileStatement
 ;
forStatement
(used by loopStatement)
 : 'for'
 '(' annotation* (variableDeclaration | multiVariableDeclaration) 'in' expression ')'
 controlStructureBody?
 ;

Statements

323

whileStatement
(used by loopStatement)
 : 'while' '(' expression ')' controlStructureBody
 | 'while' '(' expression ')' ';'
 ;
doWhileStatement
(used by loopStatement)
 : 'do' controlStructureBody? 'while' '(' expression ')'
 ;
assignment
(used by statement)
 : directlyAssignableExpression '=' expression
 | assignableExpression assignmentAndOperator expression
 ;
semi
(used by script, packageHeader, importHeader, propertyDeclaration, whenEntry)
 : EOF
 ;
semis
(used by topLevelObject, classMemberDeclarations, statements)
 : EOF
 ;

Precedence Title Symbols
Highest Postfix ++, --, ., ?., ?
 Prefix -, +, ++, --, !, label
 Type RHS :, as, as?
 Multiplicative *, /, %
 Additive +, -
 Range ..

 Infix function simpleIdentifier

 Elvis ?:

 Named checks in, !in, is, !is
 Comparison <, >, <=, >=
 Equality ==, !==
 Conjunction &&

 Disjunction ||

 Spread operator *

Lowest Assignment =, +=, -=, *=, /=, %=

expression
(used by classParameter, explicitDelegation, functionValueParameter, functionBody, propertyDeclaration,
propertyDelegate, statement, forStatement, whileStatement, doWhileStatement, assignment, indexingSuffix,
valueArgument, parenthesizedExpression, collectionLiteral, lineStringExpression, multiLineStringExpression,
ifExpression, whenSubject, whenCondition, rangeTest, jumpExpression)
 : disjunction
 ;
disjunction
(used by expression)
 : conjunction ('||' conjunction)*
 ;
conjunction
(used by disjunction)
 : equality ('&&' equality)*
 ;
equality
(used by conjunction)
 : comparison (equalityOperator comparison)*
 ;
comparison
(used by equality)
 : infixOperation (comparisonOperator infixOperation)?
 ;

Expressions

324

infixOperation
(used by comparison)
 : elvisExpression ((inOperator elvisExpression) | (isOperator type))*
 ;
elvisExpression
(used by infixOperation)
 : infixFunctionCall (elvis infixFunctionCall)*
 ;
elvis
(used by elvisExpression)
 : '?' ':'
 ;
infixFunctionCall
(used by elvisExpression)
 : rangeExpression (simpleIdentifier rangeExpression)*
 ;
rangeExpression
(used by infixFunctionCall)
 : additiveExpression ('..' additiveExpression)*
 ;
additiveExpression
(used by rangeExpression)
 : multiplicativeExpression (additiveOperator multiplicativeExpression)*
 ;
multiplicativeExpression
(used by additiveExpression)
 : asExpression (multiplicativeOperator asExpression)*
 ;
asExpression
(used by multiplicativeExpression)
 : prefixUnaryExpression (asOperator type)?
 ;
prefixUnaryExpression
(used by asExpression, assignableExpression)
 : unaryPrefix* postfixUnaryExpression
 ;
unaryPrefix
(used by prefixUnaryExpression)
 : annotation
 | label
 | prefixUnaryOperator
 ;
postfixUnaryExpression
(used by prefixUnaryExpression, directlyAssignableExpression)
 : primaryExpression
 | primaryExpression postfixUnarySuffix+
 ;
postfixUnarySuffix
(used by postfixUnaryExpression)
 : postfixUnaryOperator
 | typeArguments
 | callSuffix
 | indexingSuffix
 | navigationSuffix
 ;
directlyAssignableExpression
(used by assignment, parenthesizedDirectlyAssignableExpression)
 : postfixUnaryExpression assignableSuffix
 | simpleIdentifier
 | parenthesizedDirectlyAssignableExpression
 ;
parenthesizedDirectlyAssignableExpression
(used by directlyAssignableExpression)
 : '(' directlyAssignableExpression ')'
 ;
assignableExpression
(used by assignment, parenthesizedAssignableExpression)
 : prefixUnaryExpression
 | parenthesizedAssignableExpression
 ;
parenthesizedAssignableExpression
(used by assignableExpression)
 : '(' assignableExpression ')'
 ;
assignableSuffix
(used by directlyAssignableExpression)
 : typeArguments
 | indexingSuffix
 | navigationSuffix
 ;
indexingSuffix

325

(used by postfixUnarySuffix, assignableSuffix)
 : '[' expression (',' expression)* ']'
 ;
navigationSuffix
(used by postfixUnarySuffix, assignableSuffix)
 : memberAccessOperator (simpleIdentifier | parenthesizedExpression | 'class')
 ;
callSuffix
(used by postfixUnarySuffix)
 : typeArguments? valueArguments? annotatedLambda
 | typeArguments? valueArguments
 ;
annotatedLambda
(used by callSuffix)
 : annotation* label? lambdaLiteral
 ;
typeArguments
(used by simpleUserType, postfixUnarySuffix, assignableSuffix, callSuffix)
 : '<' typeProjection (',' typeProjection)* '>'
 ;
valueArguments
(used by constructorInvocation, constructorDelegationCall, enumEntry, callSuffix)
 : '(' ')'
 | '(' valueArgument (',' valueArgument)* ')'
 ;
valueArgument
(used by valueArguments)
 : annotation? (simpleIdentifier '=')? '*'? expression
 ;
primaryExpression
(used by postfixUnaryExpression)
 : parenthesizedExpression
 | simpleIdentifier
 | literalConstant
 | stringLiteral
 | callableReference
 | functionLiteral
 | objectLiteral
 | collectionLiteral
 | thisExpression
 | superExpression
 | ifExpression
 | whenExpression
 | tryExpression
 | jumpExpression
 ;
parenthesizedExpression
(used by navigationSuffix, primaryExpression)
 : '(' expression ')'
 ;
collectionLiteral
(used by primaryExpression)
 : '[' expression (',' expression)* ']'
 | '[' ']'
 ;
literalConstant
(used by primaryExpression)
 : BooleanLiteral
 | IntegerLiteral
 | HexLiteral
 | BinLiteral
 | CharacterLiteral
 | RealLiteral
 | 'null'
 | LongLiteral
 | UnsignedLiteral
 ;
stringLiteral
(used by primaryExpression)
 : lineStringLiteral
 | multiLineStringLiteral
 ;
lineStringLiteral
(used by stringLiteral)
 : '"' (lineStringContent | lineStringExpression)* '"'
 ;
multiLineStringLiteral
(used by stringLiteral)
 : '"""' (multiLineStringContent | multiLineStringExpression | '"')*
 TRIPLE_QUOTE_CLOSE
 ;

326

lineStringContent
(used by lineStringLiteral)
 : LineStrText
 | LineStrEscapedChar
 | LineStrRef
 ;
lineStringExpression
(used by lineStringLiteral)
 : '${' expression '}'
 ;
multiLineStringContent
(used by multiLineStringLiteral)
 : MultiLineStrText
 | '"'
 | MultiLineStrRef
 ;
multiLineStringExpression
(used by multiLineStringLiteral)
 : '${' expression '}'
 ;
lambdaLiteral
(used by annotatedLambda, functionLiteral)
 : '{' statements '}'
 | '{' lambdaParameters? '->' statements '}'
 ;
lambdaParameters
(used by lambdaLiteral)
 : lambdaParameter (',' lambdaParameter)*
 ;
lambdaParameter
(used by lambdaParameters)
 : variableDeclaration
 | multiVariableDeclaration (':' type)?
 ;
anonymousFunction
(used by functionLiteral)
 : 'fun' (type '.')? parametersWithOptionalType
 (':' type)? typeConstraints?
 functionBody?
 ;
functionLiteral
(used by primaryExpression)
 : lambdaLiteral
 | anonymousFunction
 ;
objectLiteral
(used by primaryExpression)
 : 'object' ':' delegationSpecifiers classBody
 | 'object' classBody
 ;
thisExpression
(used by primaryExpression)
 : 'this'
 | THIS_AT
 ;
superExpression
(used by primaryExpression)
 : 'super' ('<' type '>')? ('@' simpleIdentifier)?
 | SUPER_AT
 ;
ifExpression
(used by primaryExpression)
 : 'if' '(' expression ')'
 (controlStructureBody | ';')
 | 'if' '(' expression ')'
 controlStructureBody? ';'? 'else' (controlStructureBody | ';')
 ;
whenSubject
(used by whenExpression)
 : '(' (annotation* 'val' variableDeclaration '=')? expression ')'
 ;
whenExpression
(used by primaryExpression)
 : 'when' whenSubject? '{' whenEntry* '}'
 ;
whenEntry
(used by whenExpression)
 : whenCondition (',' whenCondition)* '->' controlStructureBody semi?
 | 'else' '->' controlStructureBody semi?
 ;
whenCondition

327

(used by whenEntry)
 : expression
 | rangeTest
 | typeTest
 ;
rangeTest
(used by whenCondition)
 : inOperator expression
 ;
typeTest
(used by whenCondition)
 : isOperator type
 ;
tryExpression
(used by primaryExpression)
 : 'try' block ((catchBlock+ finallyBlock?) | finallyBlock)
 ;
catchBlock
(used by tryExpression)
 : 'catch' '(' annotation* simpleIdentifier ':' type ')' block
 ;
finallyBlock
(used by tryExpression)
 : 'finally' block
 ;
jumpExpression
(used by primaryExpression)
 : 'throw' expression
 | ('return' | RETURN_AT) expression?
 | 'continue'
 | CONTINUE_AT
 | 'break'
 | BREAK_AT
 ;
callableReference
(used by primaryExpression)
 : (receiverType? '::' (simpleIdentifier | 'class'))
 ;
assignmentAndOperator
(used by assignment)
 : '+='
 | '-='
 | '*='
 | '/='
 | '%='
 ;
equalityOperator
(used by equality)
 : '!='
 | '!=='
 | '=='
 | '==='
 ;
comparisonOperator
(used by comparison)
 : '<'
 | '>'
 | '<='
 | '>='
 ;
inOperator
(used by infixOperation, rangeTest)
 : 'in'
 | NOT_IN
 ;
isOperator
(used by infixOperation, typeTest)
 : 'is'
 | NOT_IS
 ;
additiveOperator
(used by additiveExpression)
 : '+'
 | '-'
 ;
multiplicativeOperator
(used by multiplicativeExpression)
 : '*'
 | '/'
 | '%'
 ;

328

asOperator
(used by asExpression)
 : 'as'
 | 'as?'
 ;
prefixUnaryOperator
(used by unaryPrefix)
 : '++'
 | '--'
 | '-'
 | '+'
 | excl
 ;
postfixUnaryOperator
(used by postfixUnarySuffix)
 : '++'
 | '--'
 | '!' excl
 ;
excl
(used by prefixUnaryOperator, postfixUnaryOperator)
 : '!'
 | EXCL_WS
 ;
memberAccessOperator
(used by navigationSuffix)
 : '.'
 | safeNav
 | '::'
 ;
safeNav
(used by memberAccessOperator)
 : '?' '.'
 ;

modifiers
(used by typeAlias, classDeclaration, primaryConstructor, classParameter, companionObject,
functionDeclaration, propertyDeclaration, getter, setter, objectDeclaration, secondaryConstructor,
enumEntry)
 : annotation
 | modifier+
 ;
parameterModifiers
(used by functionValueParameter, parameterWithOptionalType)
 : annotation
 | parameterModifier+
 ;
modifier
(used by modifiers)
 : classModifier
 | memberModifier
 | visibilityModifier
 | functionModifier
 | propertyModifier
 | inheritanceModifier
 | parameterModifier
 | platformModifier
 ;
typeModifiers
(used by type, receiverType)
 : typeModifier+
 ;
typeModifier
(used by typeModifiers)
 : annotation
 | 'suspend'
 ;
classModifier
(used by modifier)
 : 'enum'
 | 'sealed'
 | 'annotation'
 | 'data'
 | 'inner'
 ;
memberModifier
(used by modifier)

Modi ers

329

 : 'override'
 | 'lateinit'
 ;
visibilityModifier
(used by modifier)
 : 'public'
 | 'private'
 | 'internal'
 | 'protected'
 ;
varianceModifier
(used by typeProjectionModifier, typeParameterModifier)
 : 'in'
 | 'out'
 ;
typeParameterModifiers
(used by typeParameter)
 : typeParameterModifier+
 ;
typeParameterModifier
(used by typeParameterModifiers)
 : reificationModifier
 | varianceModifier
 | annotation
 ;
functionModifier
(used by modifier)
 : 'tailrec'
 | 'operator'
 | 'infix'
 | 'inline'
 | 'external'
 | 'suspend'
 ;
propertyModifier
(used by modifier)
 : 'const'
 ;
inheritanceModifier
(used by modifier)
 : 'abstract'
 | 'final'
 | 'open'
 ;
parameterModifier
(used by parameterModifiers, modifier)
 : 'vararg'
 | 'noinline'
 | 'crossinline'
 ;
reificationModifier
(used by typeParameterModifier)
 : 'reified'
 ;
platformModifier
(used by modifier)
 : 'expect'
 | 'actual'
 ;

annotation
(used by annotatedDelegationSpecifier, typeConstraint, variableDeclaration, typeProjectionModifier,
statement, forStatement, unaryPrefix, annotatedLambda, valueArgument, whenSubject, catchBlock,
modifiers, parameterModifiers, typeModifier, typeParameterModifier)
 : singleAnnotation
 | multiAnnotation
 ;
singleAnnotation
(used by annotation)
 : annotationUseSiteTarget unescapedAnnotation
 | ('@' | AT_PRE_WS) unescapedAnnotation
 ;
multiAnnotation
(used by annotation)
 : annotationUseSiteTarget '[' unescapedAnnotation+ ']'
 | ('@' | AT_PRE_WS) '[' unescapedAnnotation+ ']'
 ;

Annotations

330

annotationUseSiteTarget
(used by singleAnnotation, multiAnnotation)
 : ('@' | AT_PRE_WS)
 ('field' | 'property' | 'get' | 'set' | 'receiver' | 'param' | 'setparam' | 'delegate') ':'
 ;
unescapedAnnotation
(used by fileAnnotation, singleAnnotation, multiAnnotation)
 : constructorInvocation
 | userType
 ;

simpleIdentifier
(used by importAlias, typeAlias, classDeclaration, classParameter, typeParameter, typeConstraint,
companionObject, functionDeclaration, variableDeclaration, parameterWithOptionalType, parameter,
objectDeclaration, enumEntry, simpleUserType, label, infixFunctionCall, directlyAssignableExpression,
navigationSuffix, valueArgument, primaryExpression, superExpression, catchBlock, callableReference,
identifier)
 : Identifier
 | 'abstract'
 | 'annotation'
 | 'by'
 | 'catch'
 | 'companion'
 | 'constructor'
 | 'crossinline'
 | 'data'
 | 'dynamic'
 | 'enum'
 | 'external'
 | 'final'
 | 'finally'
 | 'get'
 | 'import'
 | 'infix'
 | 'init'
 | 'inline'
 | 'inner'
 | 'internal'
 | 'lateinit'
 | 'noinline'
 | 'open'
 | 'operator'
 | 'out'
 | 'override'
 | 'private'
 | 'protected'
 | 'public'
 | 'reified'
 | 'sealed'
 | 'tailrec'
 | 'set'
 | 'vararg'
 | 'where'
 | 'field'
 | 'property'
 | 'receiver'
 | 'param'
 | 'setparam'
 | 'delegate'
 | 'file'
 | 'expect'
 | 'actual'
 | 'const'
 | 'suspend'
 ;
identifier
(used by packageHeader, importHeader)
 : simpleIdentifier ('.' simpleIdentifier)*
 ;

Identi ers

Lexical grammar

General

331

ShebangLine
(used by shebangLine)
 : '#!' ~[\r\n]*
 ;
DelimitedComment
(used by DelimitedComment, Hidden)
 : ('/*' (DelimitedComment | .)*? '*/')
 ;
LineComment
(used by Hidden)
 : ('//' ~[\r\n]*)
 ;
WS
(used by Hidden)
 : [\u0020\u0009\u000C]
 ;
helper
Hidden
(used by EXCL_WS, AT_POST_WS, AT_PRE_WS, AT_BOTH_WS, QUEST_WS, NOT_IS, NOT_IN)
 : DelimitedComment
 | LineComment
 | WS
 ;

RESERVED
 : '...'
 ;
EXCL_WS
(used by excl)
 : '!' Hidden
 ;
DOUBLE_ARROW
 : '=>'
 ;
DOUBLE_SEMICOLON
 : ';;'
 ;
HASH
 : '#'
 ;
AT_POST_WS
(used by label)
 : '@' Hidden
 ;
AT_PRE_WS
(used by fileAnnotation, singleAnnotation, multiAnnotation, annotationUseSiteTarget)
 : Hidden '@'
 ;
AT_BOTH_WS
 : Hidden '@' Hidden
 ;
QUEST_WS
(used by quest)
 : '?' Hidden
 ;
SINGLE_QUOTE
 : '\''
 ;

RETURN_AT
(used by jumpExpression)
 : 'return@' Identifier
 ;
CONTINUE_AT
(used by jumpExpression)
 : 'continue@' Identifier
 ;
BREAK_AT
(used by jumpExpression)
 : 'break@' Identifier
 ;
THIS_AT
(used by thisExpression)

Separators and operations

Keywords

332

 : 'this@' Identifier
 ;
SUPER_AT
(used by superExpression)
 : 'super@' Identifier
 ;
TYPEOF
 : 'typeof'
 ;
NOT_IS
(used by isOperator)
 : '!is' Hidden
 ;
NOT_IN
(used by inOperator)
 : '!in' Hidden
 ;

helper
DecDigit
(used by DecDigitOrSeparator, DecDigits, IntegerLiteral)
 : '0'..'9'
 ;
helper
DecDigitNoZero
(used by IntegerLiteral)
 : '1'..'9'
 ;
helper
DecDigitOrSeparator
(used by DecDigits, IntegerLiteral)
 : DecDigit
 | '_'
 ;
helper
DecDigits
(used by DoubleExponent, FloatLiteral, DoubleLiteral)
 : DecDigit DecDigitOrSeparator* DecDigit
 | DecDigit
 ;
helper
DoubleExponent
(used by DoubleLiteral)
 : [eE] [+-]? DecDigits
 ;
RealLiteral
(used by literalConstant)
 : FloatLiteral
 | DoubleLiteral
 ;
FloatLiteral
(used by RealLiteral)
 : DoubleLiteral [fF]
 | DecDigits [fF]
 ;
DoubleLiteral
(used by RealLiteral, FloatLiteral)
 : DecDigits? '.' DecDigits DoubleExponent?
 | DecDigits DoubleExponent
 ;
IntegerLiteral
(used by literalConstant, UnsignedLiteral, LongLiteral)
 : DecDigitNoZero DecDigitOrSeparator* DecDigit
 | DecDigit
 ;
helper
HexDigit
(used by HexDigitOrSeparator, HexLiteral, UniCharacterLiteral)
 : [0-9a-fA-F]
 ;
helper
HexDigitOrSeparator
(used by HexLiteral)
 : HexDigit
 | '_'
 ;
HexLiteral

Literals

333

(used by literalConstant, UnsignedLiteral, LongLiteral)
 : '0' [xX] HexDigit HexDigitOrSeparator* HexDigit
 | '0' [xX] HexDigit
 ;
helper
BinDigit
(used by BinDigitOrSeparator, BinLiteral)
 : [01]
 ;
helper
BinDigitOrSeparator
(used by BinLiteral)
 : BinDigit
 | '_'
 ;
BinLiteral
(used by literalConstant, UnsignedLiteral, LongLiteral)
 : '0' [bB] BinDigit BinDigitOrSeparator* BinDigit
 | '0' [bB] BinDigit
 ;
UnsignedLiteral
(used by literalConstant)
 : (IntegerLiteral | HexLiteral | BinLiteral) [uU] 'L'?
 ;
LongLiteral
(used by literalConstant)
 : (IntegerLiteral | HexLiteral | BinLiteral) 'L'
 ;
BooleanLiteral
(used by literalConstant)
 : 'true'
 | 'false'
 ;
CharacterLiteral
(used by literalConstant)
 : '\'' (EscapeSeq | ~[\n\r'\\]) '\''
 ;

helper
UnicodeDigit
(used by Identifier)
 : UNICODE_CLASS_ND
 ;
Identifier
(used by simpleIdentifier, RETURN_AT, CONTINUE_AT, BREAK_AT, THIS_AT, SUPER_AT, IdentifierOrSoftKey)
 : (Letter | '_') (Letter | '_' | UnicodeDigit)*
 | '`' ~([\r\n] | '`')+ '`'
 ;
Depending on the target and publicity of the declaration, the set of allowed symbols in identi ers
is di erent. This rule contains the union of allowed symbols from all targets. Thus, the code for
any target can be parsed using the grammar.

The allowed symbols in identi ers corresponding to the target and publicity of the declaration
are given below.
Kotlin/JVM (any declaration publicity)
~ ([\r\n] | '`' | '.' | ';' | ':' | '\' | '/' | '[' | ']' | '<' | '>')
Kotlin/Android (any declaration publicity)

The allowed symbols are di erent from allowed symbols for Kotlin/JVM and correspond to the
Dalvik Executable format.
Kotlin/JS (private declarations)
~ ([\r\n] | '`')
Kotlin/JS (public declarations)

The allowed symbols for public declarations correspond to the ECMA speci cation (section 7.6)
except that ECMA reserved words is allowed.
Kotlin/Native (any declaration publicity)
~ ([\r\n] | '`')

Identi ers

334

https://github.com/Kotlin/kotlin-spec/blob/master/grammar/src/main/antlr/UnicodeClasses.g4#L1605
https://source.android.com/devices/tech/dalvik/dex-format#simplename
https://www.ecma-international.org/ecma-262/5.1/#sec-7.6

IdentifierOrSoftKey
(used by FieldIdentifier)
 : Identifier
 | 'abstract'
 | 'annotation'
 | 'by'
 | 'catch'
 | 'companion'
 | 'constructor'
 | 'crossinline'
 | 'data'
 | 'dynamic'
 | 'enum'
 | 'external'
 | 'final'
 | 'finally'
 | 'import'
 | 'infix'
 | 'init'
 | 'inline'
 | 'inner'
 | 'internal'
 | 'lateinit'
 | 'noinline'
 | 'open'
 | 'operator'
 | 'out'
 | 'override'
 | 'private'
 | 'protected'
 | 'public'
 | 'reified'
 | 'sealed'
 | 'tailrec'
 | 'vararg'
 | 'where'
 | 'get'
 | 'set'
 | 'field'
 | 'property'
 | 'receiver'
 | 'param'
 | 'setparam'
 | 'delegate'
 | 'file'
 | 'expect'
 | 'actual'
 | 'const'
 | 'suspend'
 ;
FieldIdentifier
(used by LineStrRef, MultiLineStrRef)
 : '$' IdentifierOrSoftKey
 ;
helper
UniCharacterLiteral
(used by EscapeSeq, LineStrEscapedChar)
 : '\\' 'u' HexDigit HexDigit HexDigit HexDigit
 ;
helper
EscapedIdentifier
(used by EscapeSeq, LineStrEscapedChar)
 : '\\' ('t' | 'b' | 'r' | 'n' | '\'' | '"' | '\\' | '$')
 ;
helper
EscapeSeq
(used by CharacterLiteral)
 : UniCharacterLiteral
 | EscapedIdentifier
 ;

helper
Letter
(used by Identifier)

Characters

335

 : UNICODE_CLASS_LL
 | UNICODE_CLASS_LM
 | UNICODE_CLASS_LO
 | UNICODE_CLASS_LT
 | UNICODE_CLASS_LU
 | UNICODE_CLASS_NL
 ;

LineStrRef
(used by lineStringContent)
 : FieldIdentifier
 ;
See String templates

LineStrText
(used by lineStringContent)
 : ~('\\' | '"' | '$')+
 | '$'
 ;
LineStrEscapedChar
(used by lineStringContent)
 : EscapedIdentifier
 | UniCharacterLiteral
 ;
TRIPLE_QUOTE_CLOSE
(used by multiLineStringLiteral)
 : ('"'? '"""')
 ;
MultiLineStrRef
(used by multiLineStringContent)
 : FieldIdentifier
 ;
MultiLineStrText
(used by multiLineStringContent)
 : ~('"' | '$')+
 | '$'
 ;
ErrorCharacter
 : .
 ;

Strings

336

https://github.com/Kotlin/kotlin-spec/blob/master/grammar/src/main/antlr/UnicodeClasses.g4#L9
https://github.com/Kotlin/kotlin-spec/blob/master/grammar/src/main/antlr/UnicodeClasses.g4#L613
https://github.com/Kotlin/kotlin-spec/blob/master/grammar/src/main/antlr/UnicodeClasses.g4#L673
https://github.com/Kotlin/kotlin-spec/blob/master/grammar/src/main/antlr/UnicodeClasses.g4#L999
https://github.com/Kotlin/kotlin-spec/blob/master/grammar/src/main/antlr/UnicodeClasses.g4#L1011
https://github.com/Kotlin/kotlin-spec/blob/master/grammar/src/main/antlr/UnicodeClasses.g4#L1642

Java Interop

Kotlin is designed with Java Interoperability in mind. Existing Java code can be called from Kotlin
in a natural way, and Kotlin code can be used from Java rather smoothly as well. In this section we
describe some details about calling Java code from Kotlin.

Pretty much all Java code can be used without any issues:

import java.util.*

fun demo(source: List<Int>) {
 val list = ArrayList<Int>()
 // 'for'-loops work for Java collections:
 for (item in source) {
 list.add(item)
 }
 // Operator conventions work as well:
 for (i in 0..source.size - 1) {
 list[i] = source[i] // get and set are called
 }
}

Methods that follow the Java conventions for getters and setters (no-argument methods with
names starting with get and single-argument methods with names starting with set) are

represented as properties in Kotlin. Boolean accessor methods (where the name of the getter

starts with is and the name of the setter starts with set) are represented as properties which

have the same name as the getter method.

For example:

import java.util.Calendar

fun calendarDemo() {
 val calendar = Calendar.getInstance()
 if (calendar.firstDayOfWeek == Calendar.SUNDAY) { // call getFirstDayOfWeek()
 calendar.firstDayOfWeek = Calendar.MONDAY // call setFirstDayOfWeek()
 }
 if (!calendar.isLenient) { // call isLenient()
 calendar.isLenient = true // call setLenient()
 }
}

Calling Java code from Kotlin

Getters and Setters

337

Note that, if the Java class only has a setter, it will not be visible as a property in Kotlin, because
Kotlin does not support set-only properties at this time.

If a Java method returns void, it will return Unit when called from Kotlin. If, by any chance,

someone uses that return value, it will be assigned at the call site by the Kotlin compiler, since
the value itself is known in advance (being Unit).

Some of the Kotlin keywords are valid identi ers in Java: in, object, is, etc. If a Java library uses

a Kotlin keyword for a method, you can still call the method escaping it with the backtick (`)
character:

foo.`is`(bar)

Any reference in Java may be null, which makes Kotlin's requirements of strict null-safety

impractical for objects coming from Java. Types of Java declarations are treated specially in Kotlin
and called platform types. Null-checks are relaxed for such types, so that safety guarantees for
them are the same as in Java (see more below).

Consider the following examples:

val list = ArrayList<String>() // non-null (constructor result)
list.add("Item")
val size = list.size // non-null (primitive int)
val item = list[0] // platform type inferred (ordinary Java object)

When we call methods on variables of platform types, Kotlin does not issue nullability errors at
compile time, but the call may fail at runtime, because of a null-pointer exception or an assertion
that Kotlin generates to prevent nulls from propagating:

item.substring(1) // allowed, may throw an exception if item == null

Platform types are non-denotable, meaning that one can not write them down explicitly in the
language. When a platform value is assigned to a Kotlin variable, we can rely on type inference
(the variable will have an inferred platform type then, as item has in the example above), or we

can choose the type that we expect (both nullable and non-null types are allowed):

val nullable: String? = item // allowed, always works
val notNull: String = item // allowed, may fail at runtime

Methods returning void

Escaping for Java identi ers that are keywords in Kotlin

Null-Safety and Platform Types

338

If we choose a non-null type, the compiler will emit an assertion upon assignment. This prevents
Kotlin's non-null variables from holding nulls. Assertions are also emitted when we pass platform
values to Kotlin functions expecting non-null values etc. Overall, the compiler does its best to
prevent nulls from propagating far through the program (although sometimes this is impossible
to eliminate entirely, because of generics).

As mentioned above, platform types cannot be mentioned explicitly in the program, so there's no
syntax for them in the language. Nevertheless, the compiler and IDE need to display them
sometimes (in error messages, parameter info etc), so we have a mnemonic notation for them:

T! means " T or T? ",

(Mutable)Collection<T>! means "Java collection of T may be mutable or not, may be

nullable or not",

Array<(out) T>! means "Java array of T (or a subtype of T), nullable or not"

Java types which have nullability annotations are represented not as platform types, but as actual
nullable or non-null Kotlin types. The compiler supports several avors of nullability annotations,
including:

JetBrains (@Nullable and @NotNull from the org.jetbrains.annotations package)

Android (com.android.annotations and android.support.annotations)

JSR-305 (javax.annotation , more details below)

FindBugs (edu.umd.cs.findbugs.annotations)

Eclipse (org.eclipse.jdt.annotation)

Lombok (lombok.NonNull).

You can nd the full list in the Kotlin compiler source code.

It is possible to annotate type arguments of generic types to provide nullability information for
them as well. For example, consider these annotations on a Java declaration:

@NotNull
Set<@NotNull String> toSet(@NotNull Collection<@NotNull String> elements) { ... }

It leads to the following signature seen in Kotlin:

fun toSet(elements: (Mutable)Collection<String>) : (Mutable)Set<String> { ... }

Notation for Platform Types

—

—

—

Nullability annotations

—

—

—

—

—

—

Annotating type parameters

339

https://www.jetbrains.com/idea/help/nullable-and-notnull-annotations.html
https://github.com/JetBrains/kotlin/blob/master/core/descriptors.jvm/src/org/jetbrains/kotlin/load/java/JvmAnnotationNames.kt

Note the @NotNull annotations on String type arguments. Without them, we get platform

types in the type arguments:

fun toSet(elements: (Mutable)Collection<String!>) : (Mutable)Set<String!> { ... }

Annotating type arguments works with Java 8 target or higher and requires the nullability
annotations to support the TYPE_USE target (org.jetbrains.annotations supports this in

version 15 and above).

Note: due to the current technical limitations, the IDE does not correctly recognize these
annotations on type arguments in compiled Java libraries that are used as dependencies.

The @Nonnull annotation de ned in JSR-305 is supported for denoting nullability of Java types.

If the @Nonnull(when = ...) value is When.ALWAYS , the annotated type is treated as non-

null; When.MAYBE and When.NEVER denote a nullable type; and When.UNKNOWN forces the

type to be platform one.

A library can be compiled against the JSR-305 annotations, but there's no need to make the
annotations artifact (e.g. jsr305.jar) a compile dependency for the library consumers. The

Kotlin compiler can read the JSR-305 annotations from a library without the annotations present
on the classpath.

Since Kotlin 1.1.50, custom nullability quali ers (KEEP-79) are also supported (see below).

If an annotation type is annotated with both @TypeQualifierNickname and JSR-305

@Nonnull (or its another nickname, such as @CheckForNull), then the annotation type is

itself used for retrieving precise nullability and has the same meaning as that nullability
annotation:

JSR-305 Support

Type quali er nicknames (since 1.1.50)

340

https://aalmiray.github.io/jsr-305/apidocs/javax/annotation/Nonnull.html
https://jcp.org/en/jsr/detail?id=305
https://github.com/Kotlin/KEEP/blob/41091f1cc7045142181d8c89645059f4a15cc91a/proposals/jsr-305-custom-nullability-qualifiers.md
https://aalmiray.github.io/jsr-305/apidocs/javax/annotation/meta/TypeQualifierNickname.html

@TypeQualifierNickname
@Nonnull(when = When.ALWAYS)
@Retention(RetentionPolicy.RUNTIME)
public @interface MyNonnull {
}

@TypeQualifierNickname
@CheckForNull // a nickname to another type qualifier nickname
@Retention(RetentionPolicy.RUNTIME)
public @interface MyNullable {
}

interface A {
 @MyNullable String foo(@MyNonnull String x);
 // in Kotlin (strict mode): `fun foo(x: String): String?`

 String bar(List<@MyNonnull String> x);
 // in Kotlin (strict mode): `fun bar(x: List<String>!): String!`
}

@TypeQualifierDefault allows introducing annotations that, when being applied, de ne the

default nullability within the scope of the annotated element.

Such annotation type should itself be annotated with both @Nonnull (or its nickname) and

@TypeQualifierDefault(...) with one or more ElementType values:

ElementType.METHOD for return types of methods;

ElementType.PARAMETER for value parameters;

ElementType.FIELD for elds; and

ElementType.TYPE_USE (since 1.1.60) for any type including type arguments, upper

bounds of type parameters and wildcard types.

The default nullability is used when a type itself is not annotated by a nullability annotation, and
the default is determined by the innermost enclosing element annotated with a type quali er
default annotation with the ElementType matching the type usage.

Type quali er defaults (since 1.1.50)

—

—

—

—

341

https://aalmiray.github.io/jsr-305/apidocs/javax/annotation/meta/TypeQualifierDefault.html

@Nonnull
@TypeQualifierDefault({ElementType.METHOD, ElementType.PARAMETER})
public @interface NonNullApi {
}

@Nonnull(when = When.MAYBE)
@TypeQualifierDefault({ElementType.METHOD, ElementType.PARAMETER, ElementType.TYPE_USE})
public @interface NullableApi {
}

@NullableApi
interface A {
 String foo(String x); // fun foo(x: String?): String?

 @NotNullApi // overriding default from the interface
 String bar(String x, @Nullable String y); // fun bar(x: String, y: String?): String

 // The List<String> type argument is seen as nullable because of `@NullableApi`
 // having the `TYPE_USE` element type:
 String baz(List<String> x); // fun baz(List<String?>?): String?

 // The type of `x` parameter remains platform because there's an explicit
 // UNKNOWN-marked nullability annotation:
 String qux(@Nonnull(when = When.UNKNOWN) String x); // fun baz(x: String!): String?
}

Note: the types in this example only take place with the strict mode enabled, otherwise, the
platform types remain. See the @UnderMigration annotation and Compiler con guration

sections.

Package-level default nullability is also supported:

// FILE: test/package-info.java
@NonNullApi // declaring all types in package 'test' as non-nullable by default
package test;

The @UnderMigration annotation (provided in a separate artifact kotlin-annotations-

jvm) can be used by library maintainers to de ne the migration status for the nullability type

quali ers.

The status value in @UnderMigration(status = ...) speci es how the compiler treats

inappropriate usages of the annotated types in Kotlin (e.g. using a @MyNullable -annotated

type value as non-null):

MigrationStatus.STRICT makes annotation work as any plain nullability annotation, i.e.

report errors for the inappropriate usages and a ect the types in the annotated declarations
as they are seen in Kotlin;

with MigrationStatus.WARN , the inappropriate usages are reported as compilation

warnings instead of errors, but the types in the annotated declarations remain platform; and

@UnderMigration annotation (since 1.1.60)

—

—

342

MigrationStatus.IGNORE makes the compiler ignore the nullability annotation

completely.

A library maintainer can add @UnderMigration status to both type quali er nicknames and

type quali er defaults:

@Nonnull(when = When.ALWAYS)
@TypeQualifierDefault({ElementType.METHOD, ElementType.PARAMETER})
@UnderMigration(status = MigrationStatus.WARN)
public @interface NonNullApi {
}

// The types in the class are non-null, but only warnings are reported
// because `@NonNullApi` is annotated `@UnderMigration(status = MigrationStatus.WARN)`
@NonNullApi
public class Test {}

Note: the migration status of a nullability annotation is not inherited by its type quali er
nicknames but is applied to its usages in default type quali ers.

If a default type quali er uses a type quali er nickname and they are both @UnderMigration ,

the status from the default type quali er is used.

The JSR-305 checks can be con gured by adding the -Xjsr305 compiler ag with the following

options (and their combination):

-Xjsr305={strict|warn|ignore} to set up the behavior for non- @UnderMigration

annotations. Custom nullability quali ers, especially @TypeQualifierDefault , are already

spread among many well-known libraries, and users may need to migrate smoothly when
updating to the Kotlin version containing JSR-305 support. Since Kotlin 1.1.60, this ag only
a ects non- @UnderMigration annotations.

-Xjsr305=under-migration:{strict|warn|ignore} (since 1.1.60) to override the

behavior for the @UnderMigration annotations. Users may have di erent view on the

migration status for the libraries: they may want to have errors while the o cial migration
status is WARN , or vice versa, they may wish to postpone errors reporting for some until they

complete their migration.

-Xjsr305=@<fq.name>:{strict|warn|ignore} (since 1.1.60) to override the behavior

for a single annotation, where <fq.name> is the fully quali ed class name of the annotation.

May appear several times for di erent annotations. This is useful for managing the migration
state for a particular library.

The strict , warn and ignore values have the same meaning as those of

MigrationStatus , and only the strict mode a ects the types in the annotated declarations

as they are seen in Kotlin.

—

Compiler con guration

—

—

—

343

Note: the built-in JSR-305 annotations @Nonnull, @Nullable and @CheckForNull are

always enabled and a ect the types of the annotated declarations in Kotlin, regardless of
compiler con guration with the -Xjsr305 ag.

For example, adding -Xjsr305=ignore -Xjsr305=under-migration:ignore -

Xjsr305=@org.library.MyNullable:warn to the compiler arguments makes the compiler

generate warnings for inappropriate usages of types annotated by
@org.library.MyNullable and ignore all other JSR-305 annotations.

For kotlin versions 1.1.50+/1.2, the default behavior is the same to -Xjsr305=warn . The

strict value should be considered experimental (more checks may be added to it in the

future).

Kotlin treats some Java types specially. Such types are not loaded from Java "as is", but are
mapped to corresponding Kotlin types. The mapping only matters at compile time, the runtime
representation remains unchanged. Java's primitive types are mapped to corresponding Kotlin
types (keeping platform types in mind):

Java type Kotlin type
byte kotlin.Byte

short kotlin.Short

int kotlin.Int

long kotlin.Long

char kotlin.Char

float kotlin.Float

double kotlin.Double

boolean kotlin.Boolean

Some non-primitive built-in classes are also mapped:

Java type Kotlin type
java.lang.Object kotlin.Any!

java.lang.Cloneable kotlin.Cloneable!

java.lang.Comparable kotlin.Comparable!

java.lang.Enum kotlin.Enum!

java.lang.Annotation kotlin.Annotation!

java.lang.CharSequence kotlin.CharSequence!

java.lang.String kotlin.String!

java.lang.Number kotlin.Number!

java.lang.Throwable kotlin.Throwable!

Java's boxed primitive types are mapped to nullable Kotlin types:

Mapped types

344

https://aalmiray.github.io/jsr-305/apidocs/javax/annotation/Nonnull.html
https://aalmiray.github.io/jsr-305/apidocs/javax/annotation/Nullable.html
https://aalmiray.github.io/jsr-305/apidocs/javax/annotation/CheckForNull.html

Java type Kotlin type
java.lang.Byte kotlin.Byte?

java.lang.Short kotlin.Short?

java.lang.Integer kotlin.Int?

java.lang.Long kotlin.Long?

java.lang.Character kotlin.Char?

java.lang.Float kotlin.Float?

java.lang.Double kotlin.Double?

java.lang.Boolean kotlin.Boolean?

Note that a boxed primitive type used as a type parameter is mapped to a platform type: for
example, List<java.lang.Integer> becomes a List<Int!> in Kotlin.

Collection types may be read-only or mutable in Kotlin, so Java's collections are mapped as
follows (all Kotlin types in this table reside in the package kotlin.collections):

Java type Kotlin read-only
type

Kotlin mutable type Loaded platform type

Iterator<T> Iterator<T> MutableIterator<T> (Mutable)Iterator<T>!

Iterable<T> Iterable<T> MutableIterable<T> (Mutable)Iterable<T>!

Collection<T> Collection<T> MutableCollection<T> (Mutable)Collection<T>!

Set<T> Set<T> MutableSet<T> (Mutable)Set<T>!

List<T> List<T> MutableList<T> (Mutable)List<T>!

ListIterator<T> ListIterator<T> MutableListIterator<T> (Mutable)ListIterator<T>!

Map<K, V> Map<K, V> MutableMap<K, V> (Mutable)Map<K, V>!

Map.Entry<K, V> Map.Entry<K, V> MutableMap.MutableEntry<K,V> (Mutable)Map.
(Mutable)Entry<K, V>!

Java's arrays are mapped as mentioned below:

Java type Kotlin type
int[] kotlin.IntArray!

String[] kotlin.Array<(out) String>!

Note: the static members of these Java types are not directly accessible on the companion objects
of the Kotlin types. To call them, use the full quali ed names of the Java types, e.g.
java.lang.Integer.toHexString(foo) .

Kotlin's generics are a little di erent from Java's (see Generics). When importing Java types to
Kotlin we perform some conversions:

Java's wildcards are converted into type projections,

Foo<? extends Bar> becomes Foo<out Bar!>! ,

Foo<? super Bar> becomes Foo<in Bar!>! ;

Java generics in Kotlin

—
—

—

345

Java's raw types are converted into star projections,

List becomes List<*>! , i.e. List<out Any?>! .

Like Java's, Kotlin's generics are not retained at runtime, i.e. objects do not carry information
about actual type arguments passed to their constructors, i.e. ArrayList<Integer>() is

indistinguishable from ArrayList<Character>() . This makes it impossible to perform is-

checks that take generics into account. Kotlin only allows is-checks for star-projected generic

types:

if (a is List<Int>) // Error: cannot check if it is really a List of Ints
// but
if (a is List<*>) // OK: no guarantees about the contents of the list

Arrays in Kotlin are invariant, unlike Java. This means that Kotlin does not let us assign an
Array<String> to an Array<Any> , which prevents a possible runtime failure. Passing an

array of a subclass as an array of superclass to a Kotlin method is also prohibited, but for Java
methods this is allowed (through platform types of the form Array<(out) String>!).

Arrays are used with primitive datatypes on the Java platform to avoid the cost of
boxing/unboxing operations. As Kotlin hides those implementation details, a workaround is
required to interface with Java code. There are specialized classes for every type of primitive
array (IntArray , DoubleArray , CharArray , and so on) to handle this case. They are not

related to the Array class and are compiled down to Java's primitive arrays for maximum

performance.

Suppose there is a Java method that accepts an int array of indices:

public class JavaArrayExample {

 public void removeIndices(int[] indices) {
 // code here...
 }
}

To pass an array of primitive values you can do the following in Kotlin:

val javaObj = JavaArrayExample()
val array = intArrayOf(0, 1, 2, 3)
javaObj.removeIndices(array) // passes int[] to method

When compiling to JVM byte codes, the compiler optimizes access to arrays so that there's no
overhead introduced:

val array = arrayOf(1, 2, 3, 4)
array[1] = array[1] * 2 // no actual calls to get() and set() generated
for (x in array) { // no iterator created
 print(x)
}

—

—

Java Arrays

346

Even when we navigate with an index, it does not introduce any overhead:

for (i in array.indices) { // no iterator created
 array[i] += 2
}

Finally, in-checks have no overhead either:

if (i in array.indices) { // same as (i >= 0 && i < array.size)
 print(array[i])
}

Java classes sometimes use a method declaration for the indices with a variable number of
arguments (varargs):

public class JavaArrayExample {

 public void removeIndicesVarArg(int... indices) {
 // code here...
 }
}

In that case you need to use the spread operator * to pass the IntArray :

val javaObj = JavaArrayExample()
val array = intArrayOf(0, 1, 2, 3)
javaObj.removeIndicesVarArg(*array)

It's currently not possible to pass null to a method that is declared as varargs.

Since Java has no way of marking methods for which it makes sense to use the operator syntax,
Kotlin allows using any Java methods with the right name and signature as operator overloads
and other conventions (invoke() etc.) Calling Java methods using the in x call syntax is not

allowed.

In Kotlin, all exceptions are unchecked, meaning that the compiler does not force you to catch
any of them. So, when you call a Java method that declares a checked exception, Kotlin does not
force you to do anything:

fun render(list: List<*>, to: Appendable) {
 for (item in list) {
 to.append(item.toString()) // Java would require us to catch IOException here
 }
}

Java Varargs

Operators

Checked Exceptions

Object Methods

347

When Java types are imported into Kotlin, all the references of the type java.lang.Object are

turned into Any . Since Any is not platform-speci c, it only declares toString() ,

hashCode() and equals() as its members, so to make other members of

java.lang.Object available, Kotlin uses extension functions.

Methods wait() and notify() are not available on references of type Any . Their usage is

generally discouraged in favor of java.util.concurrent . If you really need to call these

methods, you can cast to java.lang.Object :

(foo as java.lang.Object).wait()

To retrieve the Java class of an object, use the java extension property on a class reference:

val fooClass = foo::class.java

The code above uses a bound class reference, which is supported since Kotlin 1.1. You can also
use the javaClass extension property:

val fooClass = foo.javaClass

To override clone() , your class needs to extend kotlin.Cloneable :

class Example : Cloneable {
 override fun clone(): Any { ... }
}

Do not forget about E ective Java, 3rd Edition, Item 13: Override clone judiciously.

To override finalize() , all you need to do is simply declare it, without using the override

keyword:

class C {
 protected fun finalize() {
 // finalization logic
 }
}

According to Java's rules, finalize() must not be private.

wait()/notify()

getClass()

clone()

nalize()

Inheritance from Java classes

348

http://www.oracle.com/technetwork/java/effectivejava-136174.html

At most one Java class (and as many Java interfaces as you like) can be a supertype for a class in
Kotlin.

Static members of Java classes form "companion objects" for these classes. We cannot pass such
a "companion object" around as a value, but can access the members explicitly, for example:

if (Character.isLetter(a)) { ... }

To access static members of a Java type that is mapped to a Kotlin type, use the full quali ed
name of the Java type: java.lang.Integer.bitCount(foo) .

Java re ection works on Kotlin classes and vice versa. As mentioned above, you can use
instance::class.java , ClassName::class.java or instance.javaClass to enter

Java re ection through java.lang.Class .

Other supported cases include acquiring a Java getter/setter method or a backing eld for a
Kotlin property, a KProperty for a Java eld, a Java method or constructor for a KFunction

and vice versa.

Just like Java 8, Kotlin supports SAM conversions. This means that Kotlin function literals can be
automatically converted into implementations of Java interfaces with a single non-default
method, as long as the parameter types of the interface method match the parameter types of
the Kotlin function.

You can use this for creating instances of SAM interfaces:

val runnable = Runnable { println("This runs in a runnable") }

…and in method calls:

val executor = ThreadPoolExecutor()
// Java signature: void execute(Runnable command)
executor.execute { println("This runs in a thread pool") }

If the Java class has multiple methods taking functional interfaces, you can choose the one you
need to call by using an adapter function that converts a lambda to a speci c SAM type. Those
adapter functions are also generated by the compiler when needed:

executor.execute(Runnable { println("This runs in a thread pool") })

Note that SAM conversions only work for interfaces, not for abstract classes, even if those also
have just a single abstract method.

Accessing static members

Java Re ection

SAM Conversions

349

Also note that this feature works only for Java interop; since Kotlin has proper function types,
automatic conversion of functions into implementations of Kotlin interfaces is unnecessary and
therefore unsupported.

To declare a function that is implemented in native (C or C++) code, you need to mark it with the
external modi er:

external fun foo(x: Int): Double

The rest of the procedure works in exactly the same way as in Java.

Using JNI with Kotlin

350

Kotlin code can be easily called from Java. For example, instances of a Kotlin class can be
seamlessly created and operated in Java methods. However, there are certain di erences
between Java and Kotlin that require attention when integrating Kotlin code into Java. On this
page, we'll describe the ways to tailor the interop of your Kotlin code with its Java clients.

A Kotlin property is compiled to the following Java elements:

A getter method, with the name calculated by prepending the get pre x;

A setter method, with the name calculated by prepending the set pre x (only for var

properties);

A private eld, with the same name as the property name (only for properties with backing
elds).

For example, var firstName: String gets compiled to the following Java declarations:

private String firstName;

public String getFirstName() {
 return firstName;
}

public void setFirstName(String firstName) {
 this.firstName = firstName;
}

If the name of the property starts with is , a di erent name mapping rule is used: the name of

the getter will be the same as the property name, and the name of the setter will be obtained by
replacing is with set . For example, for a property isOpen , the getter will be called

isOpen() and the setter will be called setOpen() . This rule applies for properties of any type,

not just Boolean .

All the functions and properties declared in a le app.kt inside a package org.example ,

including extension functions, are compiled into static methods of a Java class named
org.example.AppKt .

// app.kt
package org.example

class Util

fun getTime() { /*...*/ }

Calling Kotlin from Java

Properties

—

—

—

Package-level functions

351

// Java
new org.example.Util();
org.example.AppKt.getTime();

The name of the generated Java class can be changed using the @JvmName annotation:

@file:JvmName("DemoUtils")

package org.example

class Util

fun getTime() { /*...*/ }

// Java
new org.example.Util();
org.example.DemoUtils.getTime();

Having multiple les which have the same generated Java class name (the same package and the
same name or the same @JvmName annotation) is normally an error. However, the compiler has

the ability to generate a single Java facade class which has the speci ed name and contains all the
declarations from all the les which have that name. To enable the generation of such a facade,
use the @JvmMultifileClass annotation in all of the les.

// oldutils.kt
@file:JvmName("Utils")
@file:JvmMultifileClass

package org.example

fun getTime() { /*...*/ }

// newutils.kt
@file:JvmName("Utils")
@file:JvmMultifileClass

package org.example

fun getDate() { /*...*/ }

// Java
org.example.Utils.getTime();
org.example.Utils.getDate();

If you need to expose a Kotlin property as a eld in Java, annotate it with the @JvmField

annotation. The eld will have the same visibility as the underlying property. You can annotate a
property with @JvmField if it has a backing eld, is not private, does not have open ,

override or const modi ers, and is not a delegated property.

Instance elds

352

class User(id: String) {
 @JvmField val ID = id
}

// Java
class JavaClient {
 public String getID(User user) {
 return user.ID;
 }
}

Late-Initialized properties are also exposed as elds. The visibility of the eld will be the same as
the visibility of lateinit property setter.

Kotlin properties declared in a named object or a companion object will have static backing elds
either in that named object or in the class containing the companion object.

Usually these elds are private but they can be exposed in one of the following ways:

@JvmField annotation;

lateinit modi er;

const modi er.

Annotating such a property with @JvmField makes it a static eld with the same visibility as the

property itself.

class Key(val value: Int) {
 companion object {
 @JvmField
 val COMPARATOR: Comparator<Key> = compareBy<Key> { it.value }
 }
}

// Java
Key.COMPARATOR.compare(key1, key2);
// public static final field in Key class

A late-initialized property in an object or a companion object has a static backing eld with the
same visibility as the property setter.

object Singleton {
 lateinit var provider: Provider
}

// Java
Singleton.provider = new Provider();
// public static non-final field in Singleton class

Properties declared as const (in classes as well as at the top level) are turned into static elds in

Java:

Static elds

—

—

—

353

// file example.kt

object Obj {
 const val CONST = 1
}

class C {
 companion object {
 const val VERSION = 9
 }
}

const val MAX = 239

In Java:

int const = Obj.CONST;
int max = ExampleKt.MAX;
int version = C.VERSION;

As mentioned above, Kotlin represents package-level functions as static methods. Kotlin can also
generate static methods for functions de ned in named objects or companion objects if you
annotate those functions as @JvmStatic. If you use this annotation, the compiler will generate

both a static method in the enclosing class of the object and an instance method in the object
itself. For example:

class C {
 companion object {
 @JvmStatic fun callStatic() {}
 fun callNonStatic() {}
 }
}

Now, callStatic() is static in Java, while callNonStatic() is not:

C.callStatic(); // works fine
C.callNonStatic(); // error: not a static method
C.Companion.callStatic(); // instance method remains
C.Companion.callNonStatic(); // the only way it works

Same for named objects:

object Obj {
 @JvmStatic fun callStatic() {}
 fun callNonStatic() {}
}

In Java:

Obj.callStatic(); // works fine
Obj.callNonStatic(); // error
Obj.INSTANCE.callNonStatic(); // works, a call through the singleton instance
Obj.INSTANCE.callStatic(); // works too

Static methods

354

Starting from Kotlin 1.3, @JvmStatic applies to functions de ned in companion objects of

interfaces as well. Such functions compile to static methods in interfaces. Note that static method
in interfaces were introduced in Java 1.8, so be sure to use the corresponding targets.

interface ChatBot {
 companion object {
 @JvmStatic fun greet(username: String) {
 println("Hello, $username")
 }
 }
}

@JvmStatic annotation can also be applied on a property of an object or a companion object

making its getter and setter methods static members in that object or the class containing the
companion object.

Default methods are available only for targets JVM 1.8 and above.

The @JvmDefault annotation is experimental in Kotlin 1.3. Its name and behavior may

change, leading to future incompatibility.

Starting from JDK 1.8, interfaces in Java can contain default methods. You can declare a non-
abstract member of a Kotlin interface as default for the Java classes implementing it. To make a
member default, mark it with the @JvmDefault annotation. Here is an example of a Kotlin

interface with a default method:

interface Robot {
 @JvmDefault fun move() { println("~walking~") }
 fun speak(): Unit
}

The default implementation is available for Java classes implementing the interface.

//Java implementation
public class C3PO implements Robot {
 // move() implementation from Robot is available implicitly
 @Override
 public void speak() {
 System.out.println("I beg your pardon, sir");
 }
}

C3PO c3po = new C3PO();
c3po.move(); // default implementation from the Robot interface
c3po.speak();

Implementations of the interface can override default methods.

Default methods in interfaces

355

https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

//Java
public class BB8 implements Robot {
 //own implementation of the default method
 @Override
 public void move() {
 System.out.println("~rolling~");
 }

 @Override
 public void speak() {
 System.out.println("Beep-beep");
 }
}

For the @JvmDefault annotation to take e ect, the interface must be compiled with an -

Xjvm-default argument. Depending on the case of adding the annotation, specify one of the

argument values:

-Xjvm-default=enabled should be used if you add only new methods with the

@JvmDefault annotation. This includes adding the entire interface for your API.

-Xjvm-default=compatibility should be used if you are adding a @JvmDefault to the

methods that were available in the API before. This mode helps avoid compatibility breaks: all
the interface implementations written for the previous versions will be fully compatible with
the new version. However, the compatibility mode may add some overhead to the resulting
bytecode size and a ect the performance.

For more details about compatibility issues, see the @JvmDefault reference page.

Note that if an interface with @JvmDefault methods is used as a delegate, the default method

implementations are called even if the actual delegate type provides its own implementations.

interface Producer {
 @JvmDefault fun produce() {
 println("interface method")
 }
}

class ProducerImpl: Producer {
 override fun produce() {
 println("class method")
 }
}

class DelegatedProducer(val p: Producer): Producer by p {
}

fun main() {
 val prod = ProducerImpl()
 DelegatedProducer(prod).produce() // prints "interface method"
}

For more details about interface delegation in Kotlin, see Delegation.

—

—

356

The Kotlin visibilities are mapped to Java in the following way:

private members are compiled to private members;

private top-level declarations are compiled to package-local declarations;

protected remains protected (note that Java allows accessing protected members from

other classes in the same package and Kotlin doesn't, so Java classes will have broader access
to the code);

internal declarations become public in Java. Members of internal classes go through

name mangling, to make it harder to accidentally use them from Java and to allow overloading
for members with the same signature that don't see each other according to Kotlin rules;

public remains public .

Sometimes you need to call a Kotlin method with a parameter of type KClass . There is no

automatic conversion from Class to KClass , so you have to do it manually by invoking the

equivalent of the Class<T>.kotlin extension property:

kotlin.jvm.JvmClassMappingKt.getKotlinClass(MainView.class)

Sometimes we have a named function in Kotlin, for which we need a di erent JVM name in the
byte code. The most prominent example happens due to type erasure:

fun List<String>.filterValid(): List<String>
fun List<Int>.filterValid(): List<Int>

These two functions can not be de ned side-by-side, because their JVM signatures are the same:
filterValid(Ljava/util/List;)Ljava/util/List; . If we really want them to have the

same name in Kotlin, we can annotate one (or both) of them with @JvmName and specify a

di erent name as an argument:

fun List<String>.filterValid(): List<String>

@JvmName("filterValidInt")
fun List<Int>.filterValid(): List<Int>

From Kotlin they will be accessible by the same name filterValid , but from Java it will be

filterValid and filterValidInt .

The same trick applies when we need to have a property x alongside with a function getX() :

Visibility

—

—

—

—

—

KClass

Handling signature clashes with @JvmName

357

val x: Int
 @JvmName("getX_prop")
 get() = 15

fun getX() = 10

To change the names of generated accessor methods for properties without explicitly
implemented getters and setters, you can use @get:JvmName and @set:JvmName :

@get:JvmName("x")
@set:JvmName("changeX")
var x: Int = 23

Normally, if you write a Kotlin function with default parameter values, it will be visible in Java only
as a full signature, with all parameters present. If you wish to expose multiple overloads to Java
callers, you can use the @JvmOverloads annotation.

The annotation also works for constructors, static methods, and so on. It can't be used on
abstract methods, including methods de ned in interfaces.

class Circle @JvmOverloads constructor(centerX: Int, centerY: Int, radius: Double = 1.0)
{
 @JvmOverloads fun draw(label: String, lineWidth: Int = 1, color: String = "red") {
/*...*/ }
}

For every parameter with a default value, this will generate one additional overload, which has
this parameter and all parameters to the right of it in the parameter list removed. In this
example, the following will be generated:

// Constructors:
Circle(int centerX, int centerY, double radius)
Circle(int centerX, int centerY)

// Methods
void draw(String label, int lineWidth, String color) { }
void draw(String label, int lineWidth) { }
void draw(String label) { }

Note that, as described in Secondary Constructors, if a class has default values for all constructor
parameters, a public no-argument constructor will be generated for it. This works even if the
@JvmOverloads annotation is not speci ed.

As we mentioned above, Kotlin does not have checked exceptions. So, normally, the Java
signatures of Kotlin functions do not declare exceptions thrown. Thus if we have a function in
Kotlin like this:

Overloads generation

Checked exceptions

358

// example.kt
package demo

fun writeToFile() {
 /*...*/
 throw IOException()
}

And we want to call it from Java and catch the exception:

// Java
try {
 demo.Example.writeToFile();
}
catch (IOException e) { // error: writeToFile() does not declare IOException in the
throws list
 // ...
}

we get an error message from the Java compiler, because writeToFile() does not declare

IOException . To work around this problem, use the @Throws annotation in Kotlin:

@Throws(IOException::class)
fun writeToFile() {
 /*...*/
 throw IOException()
}

When calling Kotlin functions from Java, nobody prevents us from passing null as a non-null

parameter. That's why Kotlin generates runtime checks for all public functions that expect non-
nulls. This way we get a NullPointerException in the Java code immediately.

When Kotlin classes make use of declaration-site variance, there are two options of how their
usages are seen from the Java code. Let's say we have the following class and two functions that
use it:

class Box<out T>(val value: T)

interface Base
class Derived : Base

fun boxDerived(value: Derived): Box<Derived> = Box(value)
fun unboxBase(box: Box<Base>): Base = box.value

A naive way of translating these functions into Java would be this:

Box<Derived> boxDerived(Derived value) { ... }
Base unboxBase(Box<Base> box) { ... }

Null-safety

Variant generics

359

The problem is that in Kotlin we can say unboxBase(boxDerived("s")) , but in Java that

would be impossible, because in Java the class Box is invariant in its parameter T , and thus

Box<Derived> is not a subtype of Box<Base> . To make it work in Java we'd have to de ne

unboxBase as follows:

Base unboxBase(Box<? extends Base> box) { ... }

Here we make use of Java's wildcards types (? extends Base) to emulate declaration-site

variance through use-site variance, because it is all Java has.

To make Kotlin APIs work in Java we generate Box<Super> as Box<? extends Super> for

covariantly de ned Box (or Foo<? super Bar> for contravariantly de ned Foo) when it

appears as a parameter. When it's a return value, we don't generate wildcards, because otherwise
Java clients will have to deal with them (and it's against the common Java coding style). Therefore,
the functions from our example are actually translated as follows:

// return type - no wildcards
Box<Derived> boxDerived(Derived value) { ... }

// parameter - wildcards
Base unboxBase(Box<? extends Base> box) { ... }

When the argument type is nal, there's usually no point in generating the wildcard, so
Box<String> is always Box<String>, no matter what position it takes.

If we need wildcards where they are not generated by default, we can use the @JvmWildcard

annotation:

fun boxDerived(value: Derived): Box<@JvmWildcard Derived> = Box(value)
// is translated to
// Box<? extends Derived> boxDerived(Derived value) { ... }

On the other hand, if we don't need wildcards where they are generated, we can use
@JvmSuppressWildcards :

fun unboxBase(box: Box<@JvmSuppressWildcards Base>): Base = box.value
// is translated to
// Base unboxBase(Box<Base> box) { ... }

@JvmSuppressWildcards can be used not only on individual type arguments, but on

entire declarations, such as functions or classes, causing all wildcards inside them to be
suppressed.

Translation of type Nothing

360

The type Nothing is special, because it has no natural counterpart in Java. Indeed, every Java

reference type, including java.lang.Void , accepts null as a value, and Nothing doesn't

accept even that. So, this type cannot be accurately represented in the Java world. This is why
Kotlin generates a raw type where an argument of type Nothing is used:

fun emptyList(): List<Nothing> = listOf()
// is translated to
// List emptyList() { ... }

361

JavaScript

The dynamic type is not supported in code targeting the JVM

Being a statically typed language, Kotlin still has to interoperate with untyped or loosely typed
environments, such as the JavaScript ecosystem. To facilitate these use cases, the dynamic type

is available in the language:

val dyn: dynamic = ...

The dynamic type basically turns o Kotlin's type checker:

a value of this type can be assigned to any variable or passed anywhere as a parameter;

any value can be assigned to a variable of type dynamic or passed to a function that takes

dynamic as a parameter;

null -checks are disabled for such values.

The most peculiar feature of dynamic is that we are allowed to call any property or function

with any parameters on a dynamic variable:

dyn.whatever(1, "foo", dyn) // 'whatever' is not defined anywhere
dyn.whatever(*arrayOf(1, 2, 3))

On the JavaScript platform this code will be compiled "as is": dyn.whatever(1) in Kotlin

becomes dyn.whatever(1) in the generated JavaScript code.

When calling functions written in Kotlin on values of dynamic type, keep in mind the name

mangling performed by the Kotlin to JavaScript compiler. You may need to use the @JsName
annotation to assign well-de ned names to the functions that you need to call.

A dynamic call always returns dynamic as a result, so we can chain such calls freely:

dyn.foo().bar.baz()

When we pass a lambda to a dynamic call, all of its parameters by default have the type
dynamic :

Dynamic Type

—

—

—

362

dyn.foo {
 x -> x.bar() // x is dynamic
}

Expressions using values of dynamic type are translated to JavaScript "as is", and do not use the

Kotlin operator conventions. The following operators are supported:

binary: + , - , * , / , % , > , < >= , <= , == , != , === , !== , && , ||

unary

pre x: - , + , !

pre x and post x: ++ , --

assignments: += , -= , *= , /= , %=

indexed access:

read: d[a] , more than one argument is an error

write: d[a1] = a2 , more than one argument in [] is an error

in , !in and .. operations with values of type dynamic are forbidden.

For a more technical description, see the spec document.

—

—

—

—

—

—

—

—

363

https://github.com/JetBrains/kotlin/blob/master/spec-docs/dynamic-types.md

Kotlin was designed for easy interoperation with Java platform. It sees Java classes as Kotlin
classes, and Java sees Kotlin classes as Java classes. However, JavaScript is a dynamically-typed
language, which means it does not check types in compile-time. You can freely talk to JavaScript
from Kotlin via dynamic types, but if you want the full power of Kotlin type system, you can create
Kotlin headers for JavaScript libraries.

You can inline some JavaScript code into your Kotlin code using the js("…") function. For example:

fun jsTypeOf(o: Any): String {
 return js("typeof o")
}

The parameter of js is required to be a string constant. So, the following code is incorrect:

fun jsTypeOf(o: Any): String {
 return js(getTypeof() + " o") // error reported here
}
fun getTypeof() = "typeof"

To tell Kotlin that a certain declaration is written in pure JavaScript, you should mark it with
external modi er. When the compiler sees such a declaration, it assumes that the

implementation for the corresponding class, function or property is provided by the developer,
and therefore does not try to generate any JavaScript code from the declaration. This means that
you should omit bodies of external declarations. For example:

external fun alert(message: Any?): Unit

external class Node {
 val firstChild: Node

 fun append(child: Node): Node

 fun removeChild(child: Node): Node

 // etc
}

external val window: Window

Note that external modi er is inherited by nested declarations, i.e. in Node class we do not

put external before member functions and properties.

The external modi er is only allowed on package-level declarations. You can't declare an

external member of a non- external class.

Calling JavaScript from Kotlin

Inline JavaScript

external modi er

364

In JavaScript you can de ne members either on a prototype or a class itself. I.e.:

function MyClass() { ... }
MyClass.sharedMember = function() { /* implementation */ };
MyClass.prototype.ownMember = function() { /* implementation */ };

There's no such syntax in Kotlin. However, in Kotlin we have companion objects. Kotlin treats

companion objects of external class in a special way: instead of expecting an object, it

assumes members of companion objects to be members of the class itself. To describe
MyClass from the example above, you can write:

external class MyClass {
 companion object {
 fun sharedMember()
 }

 fun ownMember()
}

An external function can have optional parameters. How the JavaScript implementation actually
computes default values for these parameters, is unknown to Kotlin, thus it's impossible to use
the usual syntax to declare such parameters in Kotlin. You should use the following syntax:

external fun myFunWithOptionalArgs(x: Int,
 y: String = definedExternally,
 z: Long = definedExternally)

This means you can call myFunWithOptionalArgs with one required argument and two

optional arguments (their default values are calculated by some JavaScript code).

You can easily extend JavaScript classes as they were Kotlin classes. Just de ne an external

class and extend it by non- external class. For example:

external open class HTMLElement : Element() {
 /* members */
}

class CustomElement : HTMLElement() {
 fun foo() {
 alert("bar")
 }
}

There are some limitations:

1. When a function of external base class is overloaded by signature, you can't override it in a derived class.

Declaring (static) members of a class

Declaring optional parameters

Extending JavaScript classes

365

2. You can't override a function with default arguments.

Note that you can't extend a non-external class by external classes.

JavaScript does not have the concept of interfaces. When a function expects its parameter to
support foo and bar methods, you just pass objects that actually have these methods. You can

use interfaces to express this for statically-typed Kotlin, for example:

external interface HasFooAndBar {
 fun foo()

 fun bar()
}

external fun myFunction(p: HasFooAndBar)

Another use case for external interfaces is to describe settings objects. For example:

external interface JQueryAjaxSettings {
 var async: Boolean

 var cache: Boolean

 var complete: (JQueryXHR, String) -> Unit

 // etc
}

fun JQueryAjaxSettings(): JQueryAjaxSettings = js("{}")

external class JQuery {
 companion object {
 fun get(settings: JQueryAjaxSettings): JQueryXHR
 }
}

fun sendQuery() {
 JQuery.get(JQueryAjaxSettings().apply {
 complete = { (xhr, data) ->
 window.alert("Request complete")
 }
 })
}

External interfaces have some restrictions:

1. They can't be used on the right hand side of is checks.

2. as cast to external interface always succeeds (and produces a warning in compile-time).

3. They can't be passed as rei ed type arguments.

4. They can't be used in class literal expressions (i.e. I::class).

external interfaces

366

Kotlin compiler generates normal JavaScript classes, functions and properties you can freely use
from JavaScript code. Nevertheless, there are some subtle things you should remember.

To prevent spoiling the global object, Kotlin creates an object that contains all Kotlin declarations
from the current module. So if you name your module as myModule , all declarations are

available to JavaScript via myModule object. For example:

fun foo() = "Hello"

Can be called from JavaScript like this:

alert(myModule.foo());

This is not applicable when you compile your Kotlin module to JavaScript module (see JavaScript
Modules for more information on this). In this case there won't be a wrapper object, instead,
declarations will be exposed as a JavaScript module of a corresponding kind. For example, in case
of CommonJS you should write:

alert(require('myModule').foo());

Kotlin exposes its package structure to JavaScript, so unless you de ne your declarations in the
root package, you have to use fully-quali ed names in JavaScript. For example:

package my.qualified.packagename

fun foo() = "Hello"

Can be called from JavaScript like this:

alert(myModule.my.qualified.packagename.foo());

In some cases (for example, to support overloads), Kotlin compiler mangles names of generated
functions and attributes in JavaScript code. To control the generated names, you can use the
@JsName annotation:

Calling Kotlin from JavaScript

Isolating declarations in a separate JavaScript object

Package structure

@JsName annotation

367

// Module 'kjs'
class Person(val name: String) {
 fun hello() {
 println("Hello $name!")
 }

 @JsName("helloWithGreeting")
 fun hello(greeting: String) {
 println("$greeting $name!")
 }
}

Now you can use this class from JavaScript in the following way:

var person = new kjs.Person("Dmitry"); // refers to module 'kjs'
person.hello(); // prints "Hello Dmitry!"
person.helloWithGreeting("Servus"); // prints "Servus Dmitry!"

If we didn't specify the @JsName annotation, the name of the corresponding function would

contain a su x calculated from the function signature, for example hello_61zpoe$.

Note that Kotlin compiler does not apply such mangling to external declarations, so you don't

have to use @JsName on them. Another case worth noticing is inheriting non-external classes

from external classes. In this case any overridden functions won't be mangled as well.

The parameter of @JsName is required to be a constant string literal which is a valid identi er.

The compiler will report an error on any attempt to pass non-identi er string to @JsName . The

following example produces a compile-time error:

@JsName("new C()") // error here
external fun newC()

Kotlin numeric types, except for kotlin.Long are mapped to JavaScript Number.

kotlin.Char is mapped to JavaScript Number representing character code.

Kotlin can't distinguish between numeric types at run time (except for kotlin.Long), i.e. the

following code works:

fun f() {
 val x: Int = 23
 val y: Any = x
 println(y as Float)
}

Kotlin preserves over ow semantics for kotlin.Int , kotlin.Byte , kotlin.Short ,

kotlin.Char and kotlin.Long .

There's no 64 bit integer number in JavaScript, so kotlin.Long is not mapped to any

JavaScript object, it's emulated by a Kotlin class.

kotlin.String is mapped to JavaScript String.

Representing Kotlin types in JavaScript
—

—

—

—

—

—

368

kotlin.Any is mapped to JavaScript Object (i.e. new Object() , {} , etc).

kotlin.Array is mapped to JavaScript Array.

Kotlin collections (i.e. List , Set , Map , etc) are not mapped to any speci c JavaScript type.

kotlin.Throwable is mapped to JavaScript Error.

Kotlin preserves lazy object initialization in JavaScript.

Kotlin does not implement lazy initialization of top-level properties in JavaScript.

Starting with version 1.1.50 primitive array translation utilizes JavaScript TypedArray:

kotlin.ByteArray , -.ShortArray , -.IntArray , -.FloatArray , and -

.DoubleArray are mapped to JavaScript Int8Array, Int16Array, Int32Array, Float32Array, and

Float64Array correspondingly.

kotlin.BooleanArray is mapped to JavaScript Int8Array with a property $type$ ==

"BooleanArray"

kotlin.CharArray is mapped to JavaScript UInt16Array with a property $type$ ==

"CharArray"

kotlin.LongArray is mapped to JavaScript Array of kotlin.Long with a property

$type$ == "LongArray" .

—

—

—

—

—

—

—

—

—

—

369

Kotlin allows you to compile your Kotlin projects to JavaScript modules for popular module
systems. Here is the list of available options:

1. Plain. Don't compile for any module system. As usual, you can access a module by its name in the global scope. This
option is used by default.

2. Asynchronous Module De nition (AMD), which is in particular used by require.js library.

3. CommonJS convention, widely used by node.js/npm (require function and module.exports object)

4. Uni ed Module De nitions (UMD), which is compatible with both AMD and CommonJS, and works as "plain" when
neither AMD nor CommonJS is available at runtime.

Choosing the target module system depends on your build environment:

Setup per module: Open File -> Project Structure…, nd your module in Modules and select
"Kotlin" facet under it. Choose appropriate module system in "Module kind" eld.

Setup for the whole project: Open File -> Settings, select "Build, Execution, Deployment" ->
"Compiler" -> "Kotlin compiler". Choose appropriate module system in "Module kind" eld.

To select module system when compiling via Maven, you should set moduleKind con guration

property, i.e. your pom.xml should look like this:

<plugin>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-plugin</artifactId>
 <version>${kotlin.version}</version>
 <executions>
 <execution>
 <id>compile</id>
 <goals>
 <goal>js</goal>
 </goals>
 </execution>
 </executions>
 <!-- Insert these lines -->
 <configuration>
 <moduleKind>commonjs</moduleKind>
 </configuration>
 <!-- end of inserted text -->
</plugin>

Available values are: plain , amd , commonjs , umd .

JavaScript Modules

Choosing the Target Module System

From IntelliJ IDEA

From Maven

From Gradle

370

https://github.com/amdjs/amdjs-api/wiki/AMD
http://wiki.commonjs.org/wiki/Modules/1.1

To select module system when compiling via Gradle, you should set moduleKind property, i.e.

compileKotlin2Js.kotlinOptions.moduleKind = "commonjs"

Available values are similar to Maven.

To tell Kotlin that an external class, package, function or property is a JavaScript module, you

can use @JsModule annotation. Consider you have the following CommonJS module called

"hello":

module.exports.sayHello = function(name) { alert("Hello, " + name); }

You should declare it like this in Kotlin:

@JsModule("hello")
external fun sayHello(name: String)

Some JavaScript libraries export packages (namespaces) instead of functions and classes. In terms
of JavaScript, it's an object that has members that are classes, functions and properties. Importing
these packages as Kotlin objects often looks unnatural. The compiler allows to map imported
JavaScript packages to Kotlin packages, using the following notation:

@file:JsModule("extModule")
package ext.jspackage.name

external fun foo()

external class C

where the corresponding JavaScript module is declared like this:

module.exports = {
 foo: { /* some code here */ },
 C: { /* some code here */ }
}

Important: les marked with @file:JsModule annotation can't declare non-external members.

The example below produces compile-time error:

@file:JsModule("extModule")
package ext.jspackage.name

external fun foo()

fun bar() = "!" + foo() + "!" // error here

@JsModule annotation

Applying @JsModule to packages

Importing deeper package hierarchies

371

In the previous example the JavaScript module exports a single package. However, some
JavaScript libraries export multiple packages from within a module. This case is also supported by
Kotlin, though you have to declare a new .kt le for each package you import.

For example, let's make our example a bit more complicated:

module.exports = {
 mylib: {
 pkg1: {
 foo: function() { /* some code here */ },
 bar: function() { /* some code here */ }
 },
 pkg2: {
 baz: function() { /* some code here */ }
 }
 }
}

To import this module in Kotlin, you have to write two Kotlin source les:

@file:JsModule("extModule")
@file:JsQualifier("mylib.pkg1")
package extlib.pkg1

external fun foo()

external fun bar()

and

@file:JsModule("extModule")
@file:JsQualifier("mylib.pkg2")
package extlib.pkg2

external fun baz()

When a declaration has @JsModule , you can't use it from Kotlin code when you don't compile it

to a JavaScript module. Usually, developers distribute their libraries both as JavaScript modules
and downloadable .js les that you can copy to project's static resources and include via

<script> element. To tell Kotlin that it's ok to use a @JsModule declaration from non-module

environment, you should put @JsNonModule declaration. For example, given JavaScript code:

function topLevelSayHello(name) { alert("Hello, " + name); }
if (module && module.exports) {
 module.exports = topLevelSayHello;
}

can be described like this:

@JsNonModule annotation

372

@JsModule("hello")
@JsNonModule
@JsName("topLevelSayHello")
external fun sayHello(name: String)

Kotlin is distributed with kotlin.js standard library as a single le, which is itself compiled as

an UMD module, so you can use it with any module system described above. Also it is available
on NPM as kotlin package

Notes

373

https://www.npmjs.com/package/kotlin

At this time, JavaScript does not support the full Kotlin re ection API. The only supported part of
the API is the ::class syntax which allows you to refer to the class of an instance, or the class

corresponding to the given type. The value of a ::class expression is a stripped-down KClass

implementation that only supports the simpleName and isInstance members.

In addition to that, you can use KClass.js to access the JsClass instance corresponding to the class.
The JsClass instance itself is a reference to the constructor function. This can be used to

interoperate with JS functions that expect a reference to a constructor.

Examples:

class A
class B
class C

inline fun <reified T> foo() {
 println(T::class.simpleName)
}

val a = A()
println(a::class.simpleName) // Obtains class for an instance; prints "A"
println(B::class.simpleName) // Obtains class for a type; prints "B"
println(B::class.js.name) // prints "B"
foo<C>() // prints "C"

JavaScript Re ection

374

Since version 1.1.4, Kotlin/JS includes a dead code elimination (DCE) tool. This tool allows to strip
out unused properties, functions and classes from the generated JS. There are several ways you
get unused declarations:

Functions can be inlined and never get called directly (which happens always except for few
situations).

You are using a shared library which provides much more functions than you actually need.
For example, standard library (kotlin.js) contains functions for manipulating lists, arrays,

char sequences, adapters for DOM, etc, which together gives about 1.3 mb le. A simple
"Hello, world" application only requires console routines, which is only few kilobytes for the
entire le.

Dead code elimination is often also called 'tree shaking'.

DCE tool is currently available from Gradle.

To activate DCE tool, add the following line to build.gradle :

apply plugin: 'kotlin-dce-js'

Note that if you are using multi-project build, you should apply plugin to the main project that is
an entry point to your application.

By default, the resulting set of JavaScript les (your application together with all dependencies)
can be found at path $BUILD_DIR/min/ , where $BUILD_DIR is the path to generated

JavaScript (usually, build/classes/main).

To con gure DCE on the main source set, you can use the runDceKotlinJs task (and

corresponding runDce<sourceSetName>KotlinJs for other source sets).

Sometimes you are going to use a Kotlin declaration directly from JavaScript, and it's being
stripped out by DCE. You may want to keep this declaration. To do so, you can use the following
syntax in build.gradle :

runDceKotlinJs.keep "declarationToKeep"[, "declarationToKeep", ...]

Where declarationToKeep has the following syntax:

moduleName.dot.separated.package.name.declarationName

For example, consider a module is named kotlin-js-example and it contains a function

named toKeep in package org.jetbrains.kotlin.examples . Use the following line:

JavaScript DCE

—

—

How to use

Con guring

375

runDceKotlinJs.keep "kotlin-js-example_main.org.jetbrains.kotlin.examples.toKeep"

Note that if your function has parameters, its name will be mangled, so the mangled name
should be used in the keep directive.

Running DCE takes a bit of extra time each build, and the output size does not matter during
development. You can improve development builds time by making the DCE tool skip actual dead
code elimination with the dceOptions.devMode ag of the DCE tasks.

For example, to disable DCE based on a custom condition for the main source set and always for

the test code, add the following lines to the build script:

runDceKotlinJs.dceOptions.devMode = isDevMode
runDceTestKotlinJs.dceOptions.devMode = true

A full example that shows how to integrate Kotlin with DCE and webpack to get a small bundle,
can be found here.

As for 1.1.x versions, DCE tool is an experimental feature. This does not mean we are going to
remove it, or that it's unusable for production. This means that we can change names of
con guration parameters, default settings, etc.

Currently you should not use DCE tool if your project is a shared library. It's only applicable
when you are developing an application (which may use shared libraries). The reason is: DCE
does not know which parts of the library are going to be used by the user's application.

DCE does not perform mini cation (ugli cation) of your code by removing unnecessary
whitespaces and shortening identi ers. You should use existing tools, like UglifyJS
(https://github.com/mishoo/UglifyJS2) or Google Closure Compiler
(https://developers.google.com/closure/compiler/) for this purpose.

Development mode

Example

Notes
—

—

—

376

https://github.com/JetBrains/kotlin-examples/tree/master/gradle/js-dce

Native

Kotlin/Native runtime doesn't encourage a classical thread-oriented concurrency model with
mutually exclusive code blocks and conditional variables, as this model is known to be error-
prone and unreliable. Instead, we suggest a collection of alternative approaches, allowing you to
use hardware concurrency and implement blocking IO. Those approaches are as follows, and
they will be elaborated on in further sections:

Workers with message passing

Object subgraph ownership transfer

Object subgraph freezing

Object subgraph detachment

Raw shared memory using C globals

Coroutines for blocking operations (not covered in this document)

Instead of threads Kotlin/Native runtime o ers the concept of workers: concurrently executed
control ow streams with an associated request queue. Workers are very similar to the actors in
the Actor Model. A worker can exchange Kotlin objects with another worker, so that at any
moment each mutable object is owned by a single worker, but ownership can be transferred. See
section Object transfer and freezing.

Once a worker is started with the Worker.start function call, it can be addressed with its own

unique integer worker id. Other workers, or non-worker concurrency primitives, such as OS
threads, can send a message to the worker with the execute call.

Concurrency in Kotlin/Native

—

—

—

—

—

—

Workers

377

val future = execute(TransferMode.SAFE, { SomeDataForWorker() }) {
 // data returned by the second function argument comes to the
 // worker routine as 'input' parameter.
 input ->
 // Here we create an instance to be returned when someone consumes result future.
 WorkerResult(input.stringParam + " result")
}

future.consume {
 // Here we see result returned from routine above. Note that future object or
 // id could be transferred to another worker, so we don't have to consume future
 // in same execution context it was obtained.
 result -> println("result is $result")
}

The call to execute uses a function passed as its second parameter to produce an object

subgraph (i.e. set of mutually referring objects) which is then passed as a whole to that worker, it
is then no longer available to the thread that initiated the request. This property is checked if the

rst parameter is TransferMode.SAFE by graph traversal and is just assumed to be true, if it is

TransferMode.UNSAFE . The last parameter to execute is a special Kotlin lambda, which is

not allowed to capture any state, and is actually invoked in the target worker's context. Once
processed, the result is transferred to whatever consumes it in the future, and it is attached to
the object graph of that worker/thread.

If an object is transferred in UNSAFE mode and is still accessible from multiple concurrent

executors, program will likely crash unexpectedly, so consider that last resort in optimizing, not a
general purpose mechanism.

For a more complete example please refer to the workers example in the Kotlin/Native
repository.

An important invariant that Kotlin/Native runtime maintains is that the object is either owned by
a single thread/worker, or it is immutable (shared XOR mutable). This ensures that the same data
has a single mutator, and so there is no need for locking to exist. To achieve such an invariant, we
use the concept of not externally referred object subgraphs. This is a subgraph which has no
external references from outside of the subgraph, which could be checked algorithmically with
O(N) complexity (in ARC systems), where N is the number of elements in such a subgraph. Such
subgraphs are usually produced as a result of a lambda expression, for example some builder,
and may not contain objects, referred to externally.

Object transfer and freezing

378

https://github.com/JetBrains/kotlin-native/tree/master/samples/workers

Freezing is a runtime operation making a given object subgraph immutable, by modifying the
object header so that future mutation attempts throw an InvalidMutabilityException . It is

deep, so if an object has a pointer to other objects - transitive closure of such objects will be
frozen. Freezing is a one way transformation, frozen objects cannot be unfrozen. Frozen objects
have a nice property that due to their immutability, they can be freely shared between multiple
workers/threads without breaking the "mutable XOR shared" invariant.

If an object is frozen it can be checked with an extension property isFrozen , and if it is, object

sharing is allowed. Currently, Kotlin/Native runtime only freezes the enum objects after creation,
although additional autofreezing of certain provably immutable objects could be implemented in
the future.

An object subgraph without external references can be disconnected using
DetachedObjectGraph<T> to a COpaquePointer value, which could be stored in void*

data, so the disconnected object subgraphs can be stored in a C data structure, and later attached
back with DetachedObjectGraph<T>.attach() in an arbitrary thread or a worker.

Combining it with raw memory sharing it allows side channel object transfer between concurrent
threads, if the worker mechanisms are insu cient for a particular task.

Considering the strong ties between Kotlin/Native and C via interoperability, in conjunction with
the other mechanisms mentioned above it is possible to build popular data structures, like
concurrent hashmap or shared cache with Kotlin/Native. It is possible to rely upon shared C data,
and store in it references to detached object subgraphs. Consider the following .def le:

package = global

typedef struct {
 int version;
 void* kotlinObject;
} SharedData;

SharedData sharedData;

After running the cinterop tool it can share Kotlin data in a versionized global structure, and
interact with it from Kotlin transparently via autogenerated Kotlin like this:

Object subgraph detachment

Raw shared memory

379

class SharedData(rawPtr: NativePtr) : CStructVar(rawPtr) {
 var version: Int
 var kotlinObject: COpaquePointer?
}

So in combination with the top level variable declared above, it can allow looking at the same
memory from di erent threads and building traditional concurrent structures with platform-
speci c synchronization primitives.

Frequently, global variables are a source of unintended concurrency issues, so Kotlin/Native
implements the following mechanisms to prevent the unintended sharing of state via global
objects:

global variables, unless specially marked, can be only accessed from the main thread (that is,
the thread Kotlin/Native runtime was rst initialized), if other thread access such a global,
IncorrectDereferenceException is thrown

for global variables marked with the @kotlin.native.ThreadLocal annotation each

threads keeps thread-local copy, so changes are not visible between threads

for global variables marked with the @kotlin.native.SharedImmutable annotation

value is shared, but frozen before publishing, so each threads sees the same value

singleton objects unless marked with @kotlin.native.ThreadLocal are frozen and

shared, lazy values allowed, unless cyclic frozen structures were attempted to be created

enums are always frozen

Combined, these mechanisms allow natural race-freeze programming with code reuse across
platforms in MPP projects.

Global variables and singletons

—

—

—

—

—

380

Kotlin/Native implements strict mutability checks, ensuring the important invariant that the
object is either immutable or accessible from the single thread at that moment in time (mutable

XOR global).

Immutability is a runtime property in Kotlin/Native, and can be applied to an arbitrary object
subgraph using the kotlin.native.concurrent.freeze function. It makes all the objects

reachable from the given one immutable, such a transition is a one-way operation (i.e., objects
cannot be unfrozen later). Some naturally immutable objects such as kotlin.String ,

kotlin.Int , and other primitive types, along with AtomicInt and AtomicReference are

frozen by default. If a mutating operation is applied to a frozen object, an
InvalidMutabilityException is thrown.

To achieve mutable XOR global invariant, all globally visible state (currently, object

singletons and enums) are automatically frozen. If object freezing is not desired, a
kotlin.native.ThreadLocal annotation can be used, which will make the object state

thread local, and so, mutable (but the changed state is not visible to other threads).

Top level/global variables of non-primitive types are by default accessible in the main thread (i.e.,
the thread which initialized Kotlin/Native runtime rst) only. Access from another thread will lead
to an IncorrectDereferenceException being thrown. To make such variables accessible in

other threads, you can use either the @ThreadLocal annotation, and mark the value thread

local or @SharedImmutable , which will make the value frozen and accessible from other

threads.

Class AtomicReference can be used to publish the changed frozen state to other threads, and

so build patterns like shared caches.

Immutability in Kotlin/Native

381

To produce a library with the Kotlin/Native compiler use the -produce library or -p

library ag. For example:

$ kotlinc foo.kt -p library -o bar

the above command will produce a bar.klib with the compiled contents of foo.kt .

To link to a library use the -library <name> or -l <name> ag. For example:

$ kotlinc qux.kt -l bar

the above command will produce a program.kexe out of qux.kt and bar.klib

The cinterop tool produces .klib wrappers for native libraries as its main output. For example,

using the simple libgit2.def native library de nition le provided in your Kotlin/Native

distribution

$ cinterop -def samples/gitchurn/src/nativeInterop/cinterop/libgit2.def -compiler-option
-I/usr/local/include -o libgit2

we will obtain libgit2.klib .

See more details in INTEROP.md

The klib library management utility allows you to inspect and install the libraries.

The following commands are available.

To list library contents:

$ klib contents <name>

To inspect the bookkeeping details of the library

$ klib info <name>

To install the library to the default location use

$ klib install <name>

To remove the library from the default repository use

$ klib remove <name>

Kotlin/Native libraries

Kotlin compiler speci cs

cinterop tool speci cs

klib utility

382

All of the above commands accept an additional -repository <directory> argument for

specifying a repository di erent to the default one.

$ klib <command> <name> -repository <directory>

First let's create a library. Place the tiny library source code into kotlinizer.kt :

package kotlinizer
val String.kotlinized
 get() = "Kotlin $this"

$ kotlinc kotlinizer.kt -p library -o kotlinizer

The library has been created in the current directory:

$ ls kotlinizer.klib
kotlinizer.klib

Now let's check out the contents of the library:

$ klib contents kotlinizer

We can install kotlinizer to the default repository:

$ klib install kotlinizer

Remove any traces of it from the current directory:

$ rm kotlinizer.klib

Create a very short program and place it into a use.kt :

import kotlinizer.*

fun main(args: Array<String>) {
 println("Hello, ${"world".kotlinized}!")
}

Now compile the program linking with the library we have just created:

$ kotlinc use.kt -l kotlinizer -o kohello

And run the program:

$./kohello.kexe
Hello, Kotlin world!

Have fun!

Several examples

Advanced topics

383

When given a -library foo ag, the compiler searches the foo library in the following order:

* Current compilation directory or an absolute path.

* All repositories specified with `-repo` flag.

* Libraries installed in the default repository (For now the default is `~/.konan`,
however it could be changed by setting **KONAN_DATA_DIR** environment variable).

* Libraries installed in `$installation/klib` directory.

Kotlin/Native libraries are zip les containing a prede ned directory structure, with the following
layout:

foo.klib when unpacked as foo/ gives us:

 - foo/
 - targets/
 - $platform/
 - kotlin/
 - Kotlin compiled to LLVM bitcode.
 - native/
 - Bitcode files of additional native objects.
 - $another_platform/
 - There can be several platform specific kotlin and native pairs.
 - linkdata/
 - A set of ProtoBuf files with serialized linkage metadata.
 - resources/
 - General resources such as images. (Not used yet).
 - manifest - A file in *java property* format describing the library.

An example layout can be found in klib/stdlib directory of your installation.

Library search sequence

The library format

384

To provide access to user's native operating system services, Kotlin/Native distribution

includes a set of prebuilt libraries speci c to each target. We call them Platform Libraries.

For all Unix or Windows based targets (including Android and iPhone) we provide the

posix platform lib. It contains bindings to platform's implementation of POSIX standard.

To use the library just

import platform.posix.*

The only target for which it is not available is WebAssembly.

Note that the content of platform.posix is NOT identical on di erent platforms, in the same

way as di erent POSIX implementations are a little di erent.

There are many more platform libraries available for host and cross-compilation targets.
Kotlin/Native distribution provides access to OpenGL , zlib and other popular native

libraries on applicable platforms.

On Apple platforms objc library is provided for interoperability with Objective-C.

Inspect the contents of dist/klib/platform/$target of the distribution for the details.

The packages from platform libraries are available by default. No special link ags need to be
speci ed to use them. Kotlin/Native compiler automatically detects which of the platform

libraries have been accessed and automatically links the needed libraries.

On the other hand, the platform libs in the distribution are merely just wrappers and bindings to
the native libraries. That means the native libraries themselves (.so , .a , .dylib , .dll etc)

should be installed on the machine.

Kotlin/Native installation provides a wide spectrum of examples demonstrating the use of

platform libraries. See samples for details.

Platform libraries

Overview

POSIX bindings

Popular native libraries

Availability by default

Examples

385

https://en.wikipedia.org/wiki/WebAssembly
https://en.wikipedia.org/wiki/Objective-C
https://github.com/JetBrains/kotlin-native/tree/master/samples

Kotlin/Native follows the general tradition of Kotlin to provide excellent existing platform software
interoperability. In the case of a native platform, the most important interoperability target is a C
library. So Kotlin/Native comes with a cinterop tool, which can be used to quickly generate

everything needed to interact with an external library.

The following work ow is expected when interacting with the native library.

create a .def le describing what to include into bindings

use the cinterop tool to produce Kotlin bindings

run Kotlin/Native compiler on an application to produce the nal executable

The interoperability tool analyses C headers and produces a "natural" mapping of the types,
functions, and constants into the Kotlin world. The generated stubs can be imported into an IDE
for the purpose of code completion and navigation.

Interoperability with Swift/Objective-C is provided too and covered in a separate document
OBJC_INTEROP.md.

Note that in many cases there's no need to use custom interoperability library creation
mechanisms described below, as for APIs available on the platform standardized bindings called
platform libraries could be used. For example, POSIX on Linux/macOS platforms, Win32 on
Windows platform, or Apple frameworks on macOS/iOS are available this way.

Install libgit2 and prepare stubs for the git library:

cd samples/gitchurn
../../dist/bin/cinterop -def src/main/c_interop/libgit2.def \
 -compiler-option -I/usr/local/include -o libgit2

Compile the client:

../../dist/bin/kotlinc src/main/kotlin \
 -library libgit2 -o GitChurn

Run the client:

./GitChurn.kexe ../..

Kotlin/Native interoperability

Introduction

—

—

—

Platform libraries

Simple example

Creating bindings for a new library

386

To create bindings for a new library, start by creating a .def le. Structurally it's a simple

property le, which looks like this:

headers = png.h
headerFilter = png.h
package = png

Then run the cinterop tool with something like this (note that for host libraries that are not

included in the sysroot search paths, headers may be needed):

cinterop -def png.def -compiler-option -I/usr/local/include -o png

This command will produce a png.klib compiled library and png-build/kotlin directory

containing Kotlin source code for the library.

If the behavior for a certain platform needs to be modi ed, you can use a format like
compilerOpts.osx or compilerOpts.linux to provide platform-speci c values to the

options.

Note, that the generated bindings are generally platform-speci c, so if you are developing for
multiple targets, the bindings need to be regenerated.

After the generation of bindings, they can be used by the IDE as a proxy view of the native library.

For a typical Unix library with a con g script, the compilerOpts will likely contain the output of

a con g script with the --cflags ag (maybe without exact paths).

The output of a con g script with --libs will be passed as a -linkedArgs kotlinc ag

value (quoted) when compiling.

When library headers are imported to a C program with the #include directive, all of the

headers included by these headers are also included in the program. So all header dependencies
are included in generated stubs as well.

This behavior is correct but it can be very inconvenient for some libraries. So it is possible to
specify in the .def le which of the included headers are to be imported. The separate

declarations from other headers can also be imported in case of direct dependencies.

It is possible to lter headers by globs. The headerFilter property value from the .def le is

treated as a space-separated list of globs. If the included header matches any of the globs, then
the declarations from this header are included into the bindings.

Selecting library headers

Filtering headers by globs

387

The globs are applied to the header paths relative to the appropriate include path elements, e.g.
time.h or curl/curl.h . So if the library is usually included with #include

<SomeLbrary/Header.h> , then it would probably be correct to lter headers with

headerFilter = SomeLibrary/**

If a headerFilter is not speci ed, then all headers are included.

Some libraries have proper module.modulemap or module.map les in its headers. For

example, macOS and iOS system libraries and frameworks do. The module map le describes the
correspondence between header les and modules. When the module maps are available, the
headers from the modules that are not included directly can be ltered out using the
experimental excludeDependentModules option of the .def le:

headers = OpenGL/gl.h OpenGL/glu.h GLUT/glut.h
compilerOpts = -framework OpenGL -framework GLUT
excludeDependentModules = true

When both excludeDependentModules and headerFilter are used, they are applied as an

intersection.

Options passed to the C compiler (used to analyze headers, such as preprocessor de nitions) and
the linker (used to link nal executables) can be passed in the de nition le as compilerOpts

and linkerOpts respectively. For example

compilerOpts = -DFOO=bar
linkerOpts = -lpng

Target-speci c options, only applicable to the certain target can be speci ed as well, such as

 compilerOpts = -DBAR=bar
 compilerOpts.linux_x64 = -DFOO=foo1
 compilerOpts.mac_x64 = -DFOO=foo2

and so, C headers on Linux will be analyzed with -DBAR=bar -DFOO=foo1 and on macOS with

-DBAR=bar -DFOO=foo2 . Note that any de nition le option can have both common and the

platform-speci c part.

Filtering by module maps

C compiler and linker options

Adding custom declarations

388

https://clang.llvm.org/docs/Modules.html#module-map-language

Sometimes it is required to add custom C declarations to the library before generating bindings
(e.g., for macros). Instead of creating an additional header le with these declarations, you can
include them directly to the end of the .def le, after a separating line, containing only the

separator sequence --- :

headers = errno.h

static inline int getErrno() {
 return errno;
}

Note that this part of the .def le is treated as part of the header le, so functions with the

body should be declared as static . The declarations are parsed after including the les from

the headers list.

Sometimes it is more convenient to ship a static library with your product, rather than assume it
is available within the user's environment. To include a static library into .klib use

staticLibrary and libraryPaths clauses. For example:

headers = foo.h
staticLibraries = libfoo.a
libraryPaths = /opt/local/lib /usr/local/opt/curl/lib

When given the above snippet the cinterop tool will search libfoo.a in /opt/local/lib

and /usr/local/opt/curl/lib , and if it is found include the library binary into klib .

When using such klib in your program, the library is linked automatically.

All the supported C types have corresponding representations in Kotlin:

Signed, unsigned integral, and oating point types are mapped to their Kotlin counterpart with
the same width.

Pointers and arrays are mapped to CPointer<T>? .

Enums can be mapped to either Kotlin enum or integral values, depending on heuristics and
the de nition le hints.

Structs / unions are mapped to types having elds available via the dot notation, i.e.
someStructInstance.field1 .

typedef are represented as typealias .

Including static library in your klib

Using bindings

Basic interop types

—

—

—

—

—

389

Also, any C type has the Kotlin type representing the lvalue of this type, i.e., the value located in
memory rather than a simple immutable self-contained value. Think C++ references, as a similar
concept. For structs (and typedef s to structs) this representation is the main one and has the

same name as the struct itself, for Kotlin enums it is named ${type}Var , for CPointer<T> it

is CPointerVar<T> , and for most other types it is ${type}Var .

For types that have both representations, the one with a "lvalue" has a mutable .value

property for accessing the value.

The type argument T of CPointer<T> must be one of the "lvalue" types described above, e.g.,

the C type struct S* is mapped to CPointer<S> , int8_t* is mapped to

CPointer<int_8tVar> , and char** is mapped to CPointer<CPointerVar<ByteVar>> .

C null pointer is represented as Kotlin's null , and the pointer type CPointer<T> is not

nullable, but the CPointer<T>? is. The values of this type support all the Kotlin operations

related to handling null , e.g. ?: , ?. , !! etc.:

val path = getenv("PATH")?.toKString() ?: ""

Since the arrays are also mapped to CPointer<T> , it supports the [] operator for accessing

values by index:

fun shift(ptr: CPointer<BytePtr>, length: Int) {
 for (index in 0 .. length - 2) {
 ptr[index] = ptr[index + 1]
 }
}

The .pointed property for CPointer<T> returns the lvalue of type T , pointed by this

pointer. The reverse operation is .ptr : it takes the lvalue and returns the pointer to it.

void* is mapped to COpaquePointer – the special pointer type which is the supertype for

any other pointer type. So if the C function takes void* , then the Kotlin binding accepts any

CPointer .

Casting a pointer (including COpaquePointer) can be done with .reinterpret<T> , e.g.:

val intPtr = bytePtr.reinterpret<IntVar>()

or

val intPtr: CPointer<IntVar> = bytePtr.reinterpret()

As is with C, these reinterpret casts are unsafe and can potentially lead to subtle memory
problems in the application.

Pointer types

390

Also there are unsafe casts between CPointer<T>? and Long available, provided by the

.toLong() and .toCPointer<T>() extension methods:

val longValue = ptr.toLong()
val originalPtr = longValue.toCPointer<T>()

Note that if the type of the result is known from the context, the type argument can be omitted
as usual due to the type inference.

The native memory can be allocated using the NativePlacement interface, e.g.

val byteVar = placement.alloc<ByteVar>()

or

val bytePtr = placement.allocArray<ByteVar>(5)

The most "natural" placement is in the object nativeHeap . It corresponds to allocating native

memory with malloc and provides an additional .free() operation to free allocated

memory:

val buffer = nativeHeap.allocArray<ByteVar>(size)
<use buffer>
nativeHeap.free(buffer)

However, the lifetime of allocated memory is often bound to the lexical scope. It is possible to
de ne such scope with memScoped { ... } . Inside the braces, the temporary placement is

available as an implicit receiver, so it is possible to allocate native memory with alloc and

allocArray , and the allocated memory will be automatically freed after leaving the scope.

For example, the C function returning values through pointer parameters can be used like

val fileSize = memScoped {
 val statBuf = alloc<stat>()
 val error = stat("/", statBuf.ptr)
 statBuf.st_size
}

Although C pointers are mapped to the CPointer<T> type, the C function pointer-typed

parameters are mapped to CValuesRef<T> . When passing CPointer<T> as the value of such

a parameter, it is passed to the C function as is. However, the sequence of values can be passed
instead of a pointer. In this case the sequence is passed "by value", i.e., the C function receives
the pointer to the temporary copy of that sequence, which is valid only until the function returns.

Memory allocation

Passing pointers to bindings

391

The CValuesRef<T> representation of pointer parameters is designed to support C array

literals without explicit native memory allocation. To construct the immutable self-contained
sequence of C values, the following methods are provided:

${type}Array.toCValues() , where type is the Kotlin primitive type

Array<CPointer<T>?>.toCValues() , List<CPointer<T>?>.toCValues()

cValuesOf(vararg elements: ${type}) , where type is a primitive or pointer

For example:

C:

void foo(int* elements, int count);
...
int elements[] = {1, 2, 3};
foo(elements, 3);

Kotlin:

foo(cValuesOf(1, 2, 3), 3)

Unlike other pointers, the parameters of type const char* are represented as a Kotlin

String . So it is possible to pass any Kotlin string to a binding expecting a C string.

There are also some tools available to convert between Kotlin and C strings manually:

fun CPointer<ByteVar>.toKString(): String

val String.cstr: CValuesRef<ByteVar> .

To get the pointer, .cstr should be allocated in native memory, e.g.

val cString = kotlinString.cstr.getPointer(nativeHeap)

In all cases, the C string is supposed to be encoded as UTF-8.

To skip automatic conversion and ensure raw pointers are used in the bindings, a
noStringConversion statement in the .def le could be used, i.e.

noStringConversion = LoadCursorA LoadCursorW

This way any value of type CPointer<ByteVar> can be passed as an argument of const

char* type. If a Kotlin string should be passed, code like this could be used:

memScoped {
 LoadCursorA(null, "cursor.bmp".cstr.ptr) // for ASCII version
 LoadCursorW(null, "cursor.bmp".wcstr.ptr) // for Unicode version
}

—

—

—

Working with the strings

—

—

392

It is possible to create a scope-stable pointer of C representation of CValues<T> instance using

the CValues<T>.ptr extension property, available under memScoped { ... } . It allows

using the APIs which require C pointers with a lifetime bound to a certain MemScope . For

example:

memScoped {
 items = arrayOfNulls<CPointer<ITEM>?>(6)
 arrayOf("one", "two").forEachIndexed { index, value -> items[index] = value.cstr.ptr
}
 menu = new_menu("Menu".cstr.ptr, items.toCValues().ptr)
 ...
}

In this example, all values passed to the C API new_menu() have a lifetime of the innermost

memScope it belongs to. Once the control ow leaves the memScoped scope the C pointers

become invalid.

When a C function takes or returns a struct / union T by value, the corresponding argument type

or return type is represented as CValue<T> .

CValue<T> is an opaque type, so the structure elds cannot be accessed with the appropriate

Kotlin properties. It should be possible, if an API uses structures as handles, but if eld access is
required, there are the following conversion methods available:

fun T.readValue(): CValue<T> . Converts (the lvalue) T to a CValue<T> . So to

construct the CValue<T> , T can be allocated, lled, and then converted to CValue<T> .

CValue<T>.useContents(block: T.() -> R): R . Temporarily places the CValue<T>

to memory, and then runs the passed lambda with this placed value T as receiver. So to read

a single eld, the following code can be used:

val fieldValue = structValue.useContents { field }

To convert a Kotlin function to a pointer to a C function,
staticCFunction(::kotlinFunction) can be used. It is also able to provide the lambda

instead of a function reference. The function or lambda must not capture any values.

If the callback doesn't run in the main thread, it is mandatory to init the Kotlin/Native runtime by
calling kotlin.native.initRuntimeIfNeeded() .

Scope-local pointers

Passing and receiving structs by value

—

—

Callbacks

Passing user data to callbacks

393

Often C APIs allow passing some user data to callbacks. Such data is usually provided by the user
when con guring the callback. It is passed to some C function (or written to the struct) as e.g.
void* . However, references to Kotlin objects can't be directly passed to C. So they require

wrapping before con guring the callback and then unwrapping in the callback itself, to safely
swim from Kotlin to Kotlin through the C world. Such wrapping is possible with StableRef

class.

To wrap the reference:

val stableRef = StableRef.create(kotlinReference)
val voidPtr = stableRef.asCPointer()

where the voidPtr is a COpaquePointer and can be passed to the C function.

To unwrap the reference:

val stableRef = voidPtr.asStableRef<KotlinClass>()
val kotlinReference = stableRef.get()

where kotlinReference is the original wrapped reference.

The created StableRef should eventually be manually disposed using the .dispose()

method to prevent memory leaks:

stableRef.dispose()

After that it becomes invalid, so voidPtr can't be unwrapped anymore.

See the samples/libcurl for more details.

Every C macro that expands to a constant is represented as a Kotlin property. Other macros are
not supported. However, they can be exposed manually by wrapping them with supported
declarations. E.g. function-like macro FOO can be exposed as function foo by adding the

custom declaration to the library:

headers = library/base.h

static inline int foo(int arg) {
 return FOO(arg);
}

The .def le supports several options for adjusting the generated bindings.

Macros

De nition le hints

394

excludedFunctions property value speci es a space-separated list of the names of

functions that should be ignored. This may be required because a function declared in the C
header is not generally guaranteed to be really callable, and it is often hard or impossible to

gure this out automatically. This option can also be used to workaround a bug in the interop
itself.

strictEnums and nonStrictEnums properties values are space-separated lists of the

enums that should be generated as a Kotlin enum or as integral values correspondingly. If the
enum is not included into any of these lists, then it is generated according to the heuristics.

noStringConversion property value is space-separated lists of the functions whose

const char* parameters shall not be autoconverted as Kotlin string

Sometimes the C libraries have function parameters or struct elds of a platform-dependent
type, e.g. long or size_t . Kotlin itself doesn't provide neither implicit integer casts nor C-style

integer casts (e.g. (size_t) intValue), so to make writing portable code in such cases easier,

the convert method is provided:

fun ${type1}.convert<${type2}>(): ${type2}

where each of type1 and type2 must be an integral type, either signed or unsigned.

.convert<${type}> has the same semantics as one of the .toByte , .toShort , .toInt ,

.toLong , .toUByte , .toUShort , .toUInt or .toULong methods, depending on type .

The example of using convert :

fun zeroMemory(buffer: COpaquePointer, size: Int) {
 memset(buffer, 0, size.convert<size_t>())
}

Also, the type parameter can be inferred automatically and so may be omitted in some cases.

Kotlin objects could be pinned, i.e. their position in memory is guaranteed to be stable until
unpinned, and pointers to such objects inner data could be passed to the C functions. For
example

—

—

—

Portability

Object pinning

395

fun readData(fd: Int): String {
 val buffer = ByteArray(1024)
 buffer.usePinned { pinned ->
 while (true) {
 val length = recv(fd, pinned.addressOf(0), buffer.size.convert(), 0).toInt()

 if (length <= 0) {
 break
 }
 // Now `buffer` has raw data obtained from the `recv()` call.
 }
 }
}

Here we use service function usePinned , which pins an object, executes block and unpins it on

normal and exception paths.

396

This document covers some details of Kotlin/Native interoperability with Swift/Objective-C.

Kotlin/Native provides bidirectional interoperability with Objective-C. Objective-C frameworks
and libraries can be used in Kotlin code if properly imported to the build (system frameworks are
imported by default). See e.g. "Using cinterop" in Gradle plugin documentation. A Swift library
can be used in Kotlin code if its API is exported to Objective-C with @objc . Pure Swift modules

are not yet supported.

Kotlin modules can be used in Swift/Objective-C code if compiled into a framework (see "Targets
and output kinds" section in Gradle plugin documentation). See calculator sample for an
example.

The table below shows how Kotlin concepts are mapped to Swift/Objective-C and vice versa.

Kotlin Swift Objective-C Notes
class class @interface note
interface protocol @protocol
constructor/create Initializer Initializer note
Property Property Property note
Method Method Method note note
@Throws throws error:(NSError**)error note
Extension Extension Category member note
companion member <- Class method or property Class method or property
null nil nil
Singleton Singleton() [Singleton singleton] note
Primitive type Primitive type / NSNumber note
Unit return type Void void
String String NSString
String NSMutableString NSMutableString note
List Array NSArray
MutableList NSMutableArray NSMutableArray
Set Set NSSet
MutableSet NSMutableSet NSMutableSet note
Map Dictionary NSDictionary
MutableMap NSMutableDictionary NSMutableDictionary note
Function type Function type Block pointer type note
Suspend functions Unsupported Unsupported note
Inline classes Unsupported Unsupported note

Kotlin/Native interoperability with Swift/Objective-C

Usage

Mappings

Name translation

397

https://github.com/JetBrains/kotlin-native/tree/master/samples/calculator

Objective-C classes are imported into Kotlin with their original names. Protocols are imported as
interfaces with Protocol name su x, i.e. @protocol Foo -> interface FooProtocol .

These classes and interfaces are placed into a package speci ed in build con guration
(platform.* packages for precon gured system frameworks).

The names of Kotlin classes and interfaces are pre xed when imported to Objective-C. The pre x
is derived from the framework name.

Swift/Objective-C initializers are imported to Kotlin as constructors and factory methods named
create . The latter happens with initializers declared in the Objective-C category or as a Swift

extension, because Kotlin has no concept of extension constructors.

Kotlin constructors are imported as initializers to Swift/Objective-C.

Top-level Kotlin functions and properties are accessible as members of special classes. Each
Kotlin le is translated into such a class. E.g.

// MyLibraryUtils.kt
package my.library

fun foo() {}

can be called from Swift like

MyLibraryUtilsKt.foo()

Generally Swift argument labels and Objective-C selector pieces are mapped to Kotlin parameter
names. Anyway these two concepts have di erent semantics, so sometimes Swift/Objective-C
methods can be imported with a clashing Kotlin signature. In this case the clashing methods can
be called from Kotlin using named arguments, e.g.:

[player moveTo:LEFT byMeters:17]
[player moveTo:UP byInches:42]

in Kotlin it would be:

player.moveTo(LEFT, byMeters = 17)
player.moveTo(UP, byInches = 42)

Initializers

Top-level functions and properties

Method names translation

Errors and exceptions

398

Kotlin has no concept of checked exceptions, all Kotlin exceptions are unchecked. Swift has only
checked errors. So if Swift or Objective-C code calls a Kotlin method which throws an exception to
be handled, then the Kotlin method should be marked with a @Throws annotation. In this case

all Kotlin exceptions (except for instances of Error , RuntimeException and subclasses) are

translated into a Swift error/ NSError .

Note that the opposite reversed translation is not implemented yet: Swift/Objective-C error-
throwing methods aren't imported to Kotlin as exception-throwing.

Members of Objective-C categories and Swift extensions are imported to Kotlin as extensions.
That's why these declarations can't be overridden in Kotlin. And the extension initializers aren't
available as Kotlin constructors.

Kotlin singleton (made with an object declaration, including companion object) is imported

to Swift/Objective-C as a class with a single instance. The instance is available through the factory
method, i.e. as [MySingleton mySingleton] in Objective-C and MySingleton() in Swift.

Kotlin primitive type boxes are mapped to special Swift/Objective-C classes. For example,
kotlin.Int box is represented as KotlinInt class instance in Swift (or ${prefix}Int

instance in Objective-C, where prefix is the framework names pre x). These classes are

derived from NSNumber , so the instances are proper NSNumber s supporting all corresponding

operations.

NSNumber type is not automatically translated to Kotlin primitive types when used as a

Swift/Objective-C parameter type or return value. The reason is that NSNumber type doesn't

provide enough information about a wrapped primitive value type, i.e. NSNumber is statically

not known to be a e.g. Byte , Boolean , or Double . So Kotlin primitive values should be cast

to/from NSNumber manually (see below).

NSMutableString Objective-C class is not available from Kotlin. All instances of

NSMutableString are copied when passed to Kotlin.

Category members

Kotlin singletons

NSNumber

NSMutableString

Collections

399

Kotlin collections are converted to Swift/Objective-C collections as described in the table above.
Swift/Objective-C collections are mapped to Kotlin in the same way, except for NSMutableSet

and NSMutableDictionary . NSMutableSet isn't converted to a Kotlin MutableSet . To

pass an object for Kotlin MutableSet , you can create this kind of Kotlin collection explicitly by

either creating it in Kotlin with e.g. mutableSetOf() , or using the KotlinMutableSet class

in Swift (or ${prefix}MutableSet in Objective-C, where prefix is the framework names

pre x). The same holds for MutableMap .

Kotlin function-typed objects (e.g. lambdas) are converted to Swift functions / Objective-C blocks.
However there is a di erence in how types of parameters and return values are mapped when
translating a function and a function type. In the latter case primitive types are mapped to their
boxed representation. Kotlin Unit return value is represented as a corresponding Unit

singleton in Swift/Objective-C. The value of this singleton can be retrieved in the same way as it is
for any other Kotlin object (see singletons in the table above). To sum the things up:

fun foo(block: (Int) -> Unit) { ... }

would be represented in Swift as

func foo(block: (KotlinInt) -> KotlinUnit)

and can be called like

foo {
 bar($0 as! Int32)
 return KotlinUnit()
}

Objective-C supports "lightweight generics" de ned on classes, with a relatively limited feature
set. Swift can import generics de ned on classes to help provide additional type information to
the compiler.

Generic feature support for Objc and Swift di er from Kotlin, so the translation will inevitably
lose some information, but the features supported retain meaningful information.

Generics are currently not enabled by default. To have the framework header written with
generics, add an experimental ag to the compiler con g:

compilations.main {
 outputKinds("framework")
 extraOpts "-Xobjc-generics"
}

Function types

Generics

To Use

400

Objective-C generics do not support all features of either Kotlin or Swift, so there will be some
information lost in the translation.

Generics can only be de ned on classes, not on interfaces (protocols in Objc and Swift) or
functions.

Kotlin and Swift both de ne nullability as part of the type speci cation, while Objc de nes
nullability on methods and properties of a type. As such, the following:

class Sample<T>(){
 fun myVal():T
}

will (logically) look like this:

class Sample<T>(){
 fun myVal():T?
}

In order to support a potentially nullable type, the Objc header needs to de ne myVal with a

nullable return value.

To mitigate this, when de ning your generic classes, if the generic type should never be null,
provide a non-null type constraint:

class Sample<T:Any>(){
 fun myVal():T
}

That will force the Objc header to mark myVal as non-null.

Objective-C allows generics to be declared covariant or contravariant. Swift has no support for
variance. Generic classes coming from Objective-C can be force-cast as needed.

data class SomeData(val num:Int = 42):BaseData()
class GenVarOut<out T:Any>(val arg:T)

let variOut = GenVarOut<SomeData>(arg: sd)
let variOutAny : GenVarOut<BaseData> = variOut as! GenVarOut<BaseData>

Limitations

Nullability

Variance

Constraints

401

In Kotlin you can provide upper bounds for a generic type. Objective-C also supports this, but that
support is unavailable in more complex cases, and is currently not supported in the Kotlin -
Objective-C interop. The exception here being a non-null upper bound will make Objective-C
methods/properties non-null.

When writing Kotlin code, an object may need to be converted from a Kotlin type to the
equivalent Swift/Objective-C type (or vice versa). In this case a plain old Kotlin cast can be used,
e.g.

val nsArray = listOf(1, 2, 3) as NSArray
val string = nsString as String
val nsNumber = 42 as NSNumber

Kotlin classes and interfaces can be subclassed by Swift/Objective-C classes and protocols.

Swift/Objective-C classes and protocols can be subclassed with a Kotlin final class. Non- final

Kotlin classes inheriting Swift/Objective-C types aren't supported yet, so it is not possible to
declare a complex class hierarchy inheriting Swift/Objective-C types.

Normal methods can be overridden using the override Kotlin keyword. In this case the

overriding method must have the same parameter names as the overridden one.

Sometimes it is required to override initializers, e.g. when subclassing UIViewController .

Initializers imported as Kotlin constructors can be overridden by Kotlin constructors marked with
the @OverrideInit annotation:

class ViewController : UIViewController {
 @OverrideInit constructor(coder: NSCoder) : super(coder)

 ...
}

The overriding constructor must have the same parameter names and types as the overridden
one.

To override di erent methods with clashing Kotlin signatures, you can add a
@Suppress("CONFLICTING_OVERLOADS") annotation to the class.

Casting between mapped types

Subclassing

Subclassing Kotlin classes and interfaces from Swift/Objective-C

Subclassing Swift/Objective-C classes and protocols from Kotlin

402

By default the Kotlin/Native compiler doesn't allow calling a non-designated Objective-C initializer
as a super(...) constructor. This behaviour can be inconvenient if the designated initializers

aren't marked properly in the Objective-C library. Adding a
disableDesignatedInitializerChecks = true to the .def le for this library would

disable these compiler checks.

See INTEROP.md for an example case where the library uses some plain C features (e.g. unsafe
pointers, structs etc.).

Some features of Kotlin programming language are not yet mapped into respective features of
Objective-C or Swift. Currently, following features are not properly exposed in generated
framework headers:

suspend functions

inline classes (arguments are mapped as either underlying primitive type or id)

custom classes implementing standard Kotlin collection interfaces (List , Map , Set) and

other special classes

Kotlin subclasses of Objective-C classes

C features

Unsupported

—

—

—

—

403

Starting with 1.3.30, an experimental integration with CocoaPods is added to Kotlin/Native. This
feature allows you to represent a Kotlin/Native Gradle-project as a CocoaPods dependency. Such
a representation provides the following advantages:

Such a dependency can be included in a Pod le of an Xcode project and automatically built
(and rebuilt) along with this project. As a result, importing to Xcode is simpli ed since there is
no need to write corresponding Gradle tasks and Xcode build steps manually.

When building from Xcode, you can use CocoaPods libraries without writing .def les
manually and setting cinterop tool parameters. In this case, all required parameters can be
obtained from the Xcode project con gured by CocoaPods.

For an example of CocoaPods integration, refer to the cocoapods sample.

The CocoaPods support is implemented in a separate Gradle plugin:
org.jetbrains.kotlin.native.cocoapods .

Note: The plugin is based on the multiplatform project model and requires applying the
org.jetbrains.kotlin.multiplatform plugin. See details about the multiplatform

plugin at the corresponding page.

When applied, the CocoaPods plugin does the following:

1. Adds both debug and release frameworks as output binaries for all iOS and macOS targets.

2. Creates a podspec task which generates a podspec le for the given project.

The podspec generated includes a path to an output framework and script phases which
automate building this framework during a build process of an Xcode project. Some elds of the
podspec le can be con gured using the kotlin.cocoapods { ... } code block.

// Apply plugins.
plugins {
 id("org.jetbrains.kotlin.multiplatform") version "1.3.30"
 id("org.jetbrains.kotlin.native.cocoapods") version "1.3.30"
}

// CocoaPods requires the podspec to have a version.
version = "1.0"

kotlin {
 cocoapods {
 // Configure fields required by CocoaPods.
 summary = "Some description for a Kotlin/Native module"
 homepage = "Link to a Kotlin/Native module homepage"
 }
}

CocoaPods integration

—

—

CocoaPods Gradle plugin

404

https://cocoapods.org/
https://github.com/JetBrains/kotlin-native/tree/master/samples/cocoapods
https://kotlinlang.org/docs/reference/building-mpp-with-gradle.html
https://guides.cocoapods.org/syntax/podspec.html

The following podspec elds are required by CocoaPods:

version

summary

homepage

A version of the Gradle project is used as a value for the version eld. Fields summary and

homepage can be con gured using the cocoapods code block.

This podspec le can be referenced from a Pod le of an Xcode project. After that the framework
built from the Kotlin/Native module can be used from this Xcode project. If necessary, this
framework is automatically rebuilt during Xcode build process.

To import a Kotlin/Native module in an existing Xcode project:

1. Make sure that you have CocoaPods installed. We recommend using CocoaPods 1.6.1 or later.

2. Con gure a Gradle project: apply the org.jetbrains.kotlin.native.cocoapods

plugin, add and con gure the targets, and specify the required podspec elds.

3. Run the podspec task. The podspec le described above will be generated.

In order to avoid compatibility issues during an Xcode build, the plugin requires using a
Gradle wrapper. To generate the wrapper automatically during execution of the podspec

task, run it with the parameter -

Pkotlin.native.cocoapods.generate.wrapper=true.

4. Add a reference to the generated podspec in a Pod le of the Xcode project.

 target 'my-ios-app' do
 pod 'my_kotlin_library', :path => 'path/to/my-kotlin-library'
 end

5. Run pod install for the Xcode project.

After completing these steps, you can open the generated workspace (see CocoaPods
documentation) and run an Xcode build.

The CocoaPods plugin also allows using CocoaPods libraries without manual con guring cinterop
parameters (see the corresponding section of the multiplatform plugin documentation). The
cocoapods { ... } code block allows you to add dependencies on CocoaPods libraries.

—

—

—

Work ow

Interoperability

405

https://guides.cocoapods.org/using/the-podfile.html
https://guides.cocoapods.org/using/getting-started.html#installation
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://guides.cocoapods.org/using/using-cocoapods.html#installation
https://kotlinlang.org/docs/reference/building-mpp-with-gradle.html#cinterop-support

kotlin {
 cocoapods {
 // Configure a dependency on AFNetworking.
 // The CocoaPods version notation is supported.
 // The dependency will be added to all macOS and iOS targets.
 pod("AFNetworking", "~> 3.2.0")
 }
}

To use these dependencies from a Kotlin code, import a package cocoapods.<library-

name> . In the example above, it's cocoapods.AFNetworking .

The dependencies declared in this way are added in the podspec le and downloaded during the
execution of pod install .

Important: To correctly import the dependencies into the Kotlin/Native module, the Pod le
must contain either use_modular_headers! or use_frameworks! directive.

Search paths for libraries added in the Kotlin/Native module in this way are obtained from
properties of the Xcode projects con gured by CocoaPods. Thus if the module uses CocoaPods
libraries, it can be build only from Xcode.

If a Kotlin/Native module uses a CocoaPods library, you can built this module only from an
Xcode project. Otherwise the CocoaPods library cannot be resolved by the Kotlin/Native
infrastructure.

Subspecs are not supported.

Current Limitations
—

—

406

https://guides.cocoapods.org/syntax/podfile.html#use_modular_headers_bang
https://guides.cocoapods.org/syntax/podfile.html#use_frameworks_bang
https://guides.cocoapods.org/syntax/podspec.html#group_subspecs

Since 1.3.40, a separate Gradle plugin for Kotlin/Native is deprecated in favor of the kotlin-

multiplatform plugin. This plugin provides an IDE support along with support of the new

multiplatform project model introduced in Kotlin 1.3.0. Below you can nd a short list of
di erences between kotlin-platform-native and kotlin-muliplatform plugins. For

more information see the kotlin-muliplatform documentation page. For kotlin-

platform-native reference see the corresponding section.

To apply the kotlin-multiplatform plugin, just add the following snippet into your build

script:

plugins {
 id("org.jetbrains.kotlin.multiplatform") version '1.3.40'
}

With the kotlin-platform-native plugin a set of target platforms is speci ed as a list in

properties of the main component:

components.main {
 targets = ['macos_x64', 'linux_x64', 'mingw_x64']
}

With the kotlin-multiplatform plugin target platforms can be added into a project using

special methods available in the kotlin extension. Each method adds into a project one target
which can be accessed using the targets property. Each target can be con gured

independently including output kinds, additional compiler options etc. See details about targets
at the corresponding page.

Kotlin/Native Gradle plugin

Applying the multiplatform plugin

Managing targets

407

https://kotlinlang.org/docs/reference/building-mpp-with-gradle.html
https://kotlinlang.org/docs/reference/building-mpp-with-gradle.html#setting-up-targets

import org.jetbrains.kotlin.gradle.plugin.mpp.KotlinNativeTarget

kotlin {
 // These targets are declared without any target-specific settings.
 macosX64()
 linuxX64()

 // You can specify a custom name used to access the target.
 mingwX64("windows")

 iosArm64 {
 // Additional settings for ios_arm64.
 }

 // You can access declared targets using the `targets` property.
 println(targets.macosX64)
 println(targets.windows)

 // You also can configure all native targets in a single block.
 targets.withType(KotlinNativeTarget) {
 // Native target configuration.
 }
}

Each target includes two compilations: main and test compiling product and test sources

respectively. A compilation is an abstraction over a compiler invocation and described at the
corresponding page.

With the kotlin-platform-native plugin source sets are used to separate test and product

sources. Also you can specify di erent sources for di erent platforms in the same source set:

sourceSets {
 // Adding target-independent sources.
 main.kotlin.srcDirs += 'src/main/mySources'

 // Adding Linux-specific code.
 main.target('linux_x64').srcDirs += 'src/main/linux'
}

With the kotlin-multiplatform plugin source sets are also used to group sources but

source les for di erent platforms are located in di erent source sets. For each declared target
two source sets are created: <target-name>Main and <target-name>Test containing

product and test sources for this platform. Common for all platforms sources are located in
commonMain and commonTest source sets created by default. More information about source

sets can be found here.

Managing sources

408

https://kotlinlang.org/docs/reference/building-mpp-with-gradle.html#configuring-compilations
https://kotlinlang.org/docs/reference/building-mpp-with-gradle.html#configuring-source-sets

kotlin {
 sourceSets {
 // Adding target-independent sources.
 commonMain.kotlin.srcDirs += file("src/main/mySources")

 // Adding Linux-specific code.
 linuxX64Main.kotlin.srcDirs += file("src/main/linux")
 }
}

With the kotlin-platform-native plugin dependencies are con gured in a traditional for

Gradle way by grouping them into con gurations using the project dependencies block:

dependencies {
 implementation 'org.sample.test:mylibrary:1.0'
 testImplementation 'org.sample.test:testlibrary:1.0'
}

The kotlin-multiplatform plugin also uses con gurations under the hood but it also

provides a dependencies block for each source set allowing con guring dependencies of this

sources set:

kotlin.sourceSets {
 commonMain {
 dependencies {
 implementation("org.sample.test:mylibrary:1.0")
 }
 }

 commonTest {
 dependencies {
 implementation("org.sample.test:testlibrary:1.0")
 }
 }
}

Note that a module referenced by a dependency declared for commonMain or commonTest

source set must be published using the kotlin-multiplatform plugin. If you want to use

libraries published by the kotlin-platform-native plugin, you need to declare a separate

source set for common native sources.

Managing dependencies

409

kotlin.sourceSets {
 // Create a common source set used by native targets only.
 nativeMain {
 dependsOn(commonMain)
 dependencies {
 // Depend on a library published by the kotlin-platform-naive plugin.
 implementation("org.sample.test:mylibrary:1.0")
 }
 }

 // Configure all native platform sources sets to use it as a common one.
 linuxX64Main.dependsOn(nativeMain)
 macosX64Main.dependsOn(nativeMain)
 //...
}

See more info about dependencies at the corresponding page.

With the kotlin-platform-native plugin output kinds are speci ed as a list in properties of

a component:

components.main {
 // Compile the component into an executable and a Kotlin/Native library.
 outputKinds = [EXECUTABLE, KLIBRARY]
}

With the kotlin-multiplatform plugin a compilation always produces a *.klib le. A

separate binaries block is used to con gure what nal native binaries should be produced by

each target. Each binary can be con gured independently including linker options, executable
entry point etc.

kotlin {
 macosX64 {
 binaries {
 executable {
 // Binary configuration: linker options, name, etc.
 }
 framework {
 // ...
 }

 }
 }
}

See more about native binaries declaration at the corresponding page.

Output kinds

Publishing

410

https://kotlinlang.org/docs/reference/building-mpp-with-gradle.html#adding-dependencies
https://kotlinlang.org/docs/reference/building-mpp-with-gradle.html#building-final-native-binaries

Both kotlin-platform-native and kotlin-multiplatform plugins automatically set up

artifact publication when the maven-publish plugin is applied. See details about publication at

the corresponding page. Note that currently only Kotlin/Native libraries (*.klib) can be

published for native targets.

With the kotlin-platform-native plugin interop with a native library can be declared in

component dependencies:

components.main {
 dependencies {
 cinterop('mystdio') {
 // Cinterop configuration.
 }
 }
}

With the kotlin-multiplatform plugin interops are con gured as a part of a compilation

(see details here). The rest of an interop con guration is the same as for the kotlin-

platform-native plugin.

kotlin {
 macosX64 {
 compilations.main.cinterops {
 mystdio {
 // Cinterop configuration.
 }
 }
 }
}

You may use the Gradle plugin to build Kotlin/Native projects. Builds of the plugin are available at
the Gradle plugin portal, so you can apply it using Gradle plugin DSL:

plugins {
 id "org.jetbrains.kotlin.platform.native" version "1.3.0-rc-146"
}

You also can get the plugin from a Bintray repository. In addition to releases, this repo contains
old and development versions of the plugin which are not available at the plugin portal. To get
the plugin from the Bintray repo, include the following snippet in your build script:

Cinterop support

kotlin-platform-native reference

Overview

411

https://kotlinlang.org/docs/reference/building-mpp-with-gradle.html#publishing-a-multiplatform-library
https://kotlinlang.org/docs/reference/building-mpp-with-gradle.html#cinterop-support
https://plugins.gradle.org/plugin/org.jetbrains.kotlin.platform.native

buildscript {
 repositories {
 mavenCentral()
 maven {
 url "https://dl.bintray.com/jetbrains/kotlin-native-dependencies"
 }
 }

 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-native-gradle-plugin:1.3.0-rc-146"
 }
}

apply plugin: 'org.jetbrains.kotlin.platform.native'

By default the plugin downloads the Kotlin/Native compiler during the rst run. If you have
already downloaded the compiler manually you can specify the path to its root directory using
org.jetbrains.kotlin.native.home project property (e.g. in gradle.properties).

org.jetbrains.kotlin.native.home=/home/user/kotlin-native-0.8

In this case the compiler will not be downloaded by the plugin.

Source management in the kotlin.platform.native plugin is uniform with other Kotlin

plugins and is based on source sets. A source set is a group of Kotlin/Native source which may
contain both common and platform-speci c code. The plugin provides a top-level script block
sourceSets allowing you to con gure source sets. Also it creates the default source sets main

and test (for production and test code respectively).

By default the production sources are located in src/main/kotlin and the test sources - in

src/test/kotlin .

sourceSets {
 // Adding target-independent sources.
 main.kotlin.srcDirs += 'src/main/mySources'

 // Adding Linux-specific code. It will be compiled in Linux binaries only.
 main.target('linux_x64').srcDirs += 'src/main/linux'
}

By default the plugin creates software components for the main and test source sets. You can
access them via the components container provided by Gradle or via the component property

of a corresponding source set:

Source management

Targets and output kinds

412

// Main component.
components.main
sourceSets.main.component

// Test component.
components.test
sourceSets.test.component

Components allow you to specify:

Targets (e.g. Linux/x64 or iOS/arm64 etc)

Output kinds (e.g. executable, library, framework etc)

Dependencies (including interop ones)

Targets can be speci ed by setting a corresponding component property:

components.main {
 // Compile this component for 64-bit MacOS, Linux and Windows.
 targets = ['macos_x64', 'linux_x64', 'mingw_x64']
}

The plugin uses the same notation as the compiler. By default, test component uses the same
targets as speci ed for the main one.

Output kinds can also be speci ed using a special property:

components.main {
 // Compile the component into an executable and a Kotlin/Native library.
 outputKinds = [EXECUTABLE, KLIBRARY]
}

All constants used here are available inside a component con guration script block. The plugin
supports producing binaries of the following kinds:

EXECUTABLE - an executable le;

KLIBRARY - a Kotlin/Native library (*.klib);

FRAMEWORK - an Objective-C framework;

DYNAMIC - shared native library;

STATIC - static native library.

Also each native binary is built in two variants (build types): debug (debuggable, not optimized)

and release (not debuggable, optimized). Note that Kotlin/Native libraries have only debug

variant because optimizations are preformed only during compilation of a nal binary
(executable, static lib etc) and a ect all libraries used to build it.

The plugin creates a compilation task for each combination of the target, output kind, and build
type. The tasks have the following naming convention:

—

—

—

—

—

—

—

—

Compile tasks

413

compile<ComponentName><BuildType><OutputKind><Target>KotlinNative

For example compileDebugKlibraryMacos_x64KotlinNative ,

compileTestDebugKotlinNative .

The name contains the following parts (some of them may be empty):

<ComponentName> - name of a component. Empty for the main component.

<BuildType> - Debug or Release .

<OutputKind> - output kind name, e.g. Executabe or Dynamic . Empty if the component

has only one output kind.

<Target> - target the component is built for, e.g. Macos_x64 or Wasm32 . Empty if the

component is built only for one target.

Also the plugin creates a number of aggregate tasks allowing you to build all the binaries for a
build type (e.g. assembleAllDebug) or all the binaries for a particular target (e.g.

assembleAllWasm32).

Basic lifecycle tasks like assemble , build , and clean are also available.

The plugin builds a test executable for all the targets speci ed for the test component. If the

current host platform is included in this list the test running tasks are also created. To run tests,
execute the standard lifecycle check task:

./gradlew check

The plugin allows you to declare dependencies on les and other projects using traditional
Gradle's mechanism of con gurations. The plugin supports Kotlin multiplatform projects allowing
you to declare the expectedBy dependencies

dependencies {
 implementation files('path/to/file/dependencies')
 implementation project('library')
 testImplementation project('testLibrary')
 expectedBy project('common')
}

It's possible to depend on a Kotlin/Native library published earlier in a maven repo. The plugin
relies on Gradle's metadata support so the corresponding feature must be enabled. Add the
following line in your settings.gradle :

enableFeaturePreview('GRADLE_METADATA')

—

—

—

—

Running tests

Dependencies

414

https://github.com/gradle/gradle/blob/master/subprojects/docs/src/docs/design/gradle-module-metadata-specification.md

Now you can declare a dependency on a Kotlin/Native library in the traditional
group:artifact:version notation:

dependencies {
 implementation 'org.sample.test:mylibrary:1.0'
 testImplementation 'org.sample.test:testlibrary:1.0'
}

Dependency declaration is also possible in the component block:

components.main {
 dependencies {
 implementation 'org.sample.test:mylibrary:1.0'
 }
}

components.test {
 dependencies {
 implementation 'org.sample.test:testlibrary:1.0'
 }
}

It's possible to declare a cinterop dependency for a component:

components.main {
 dependencies {
 cinterop('mystdio') {
 // src/main/c_interop/mystdio.def is used as a def file.

 // Set up compiler options
 compilerOpts '-I/my/include/path'

 // It's possible to set up different options for different targets
 target('linux') {
 compilerOpts '-I/linux/include/path'
 }
 }
 }
}

Here an interop library will be built and added in the component dependencies.

Often it's necessary to specify target-speci c linker options for a Kotlin/Native binary using an
interop. It can be done using the target script block:

components.main {
 target('linux') {
 linkerOpts '-L/path/to/linux/libs'
 }
}

Also the allTargets block is available.

Using cinterop

415

components.main {
 // Configure all targets.
 allTargets {
 linkerOpts '-L/path/to/libs'
 }
}

In the presence of maven-publish plugin the publications for all the binaries built are created.

The plugin uses Gradle metadata to publish the artifacts so this feature must be enabled (see the
dependencies section).

Now you can publish the artifacts with the standard Gradle publish task:

./gradlew publish

Only EXECUTABLE and KLIBRARY binaries are published currently.

The plugin allows you to customize the pom generated for the publication with the pom code

block available for every component:

components.main {
 pom {
 withXml {
 def root = asNode()
 root.appendNode('name', 'My library')
 root.appendNode('description', 'A Kotlin/Native library')
 }
 }
}

The plugin is shipped with a customized version of the kotlinx.serialization plugin. To

use it you don't have to add new buildscript dependencies, just apply the plugins and add a
dependency on the serialization library:

apply plugin: 'org.jetbrains.kotlin.platform.native'
apply plugin: 'kotlinx-serialization-native'

dependencies {
 implementation 'org.jetbrains.kotlinx:kotlinx-serialization-runtime-native'
}

The the example project for details.

In this section a commented DSL is shown. See also the example projects that use this plugin, e.g.
Kotlinx.coroutines, MPP http client

Publishing

Serialization plugin

DSL example

416

https://github.com/ilmat192/kotlin-native-serialization-sample
https://github.com/Kotlin/kotlinx.coroutines
https://github.com/e5l/http-client-common/tree/master/samples/ios-test-application

plugins {
 id "org.jetbrains.kotlin.platform.native" version "1.3.0-rc-146"
}

sourceSets.main {
 // Plugin uses Gradle's source directory sets here,
 // so all the DSL methods available in SourceDirectorySet can be called here.
 // Platform independent sources.
 kotlin.srcDirs += 'src/main/customDir'

 // Linux-specific sources
 target('linux').srcDirs += 'src/main/linux'
}

components.main {

 // Set up targets
 targets = ['linux_x64', 'macos_x64', 'mingw_x64']

 // Set up output kinds
 outputKinds = [EXECUTABLE, KLIBRARY, FRAMEWORK, DYNAMIC, STATIC]

 // Specify custom entry point for executables
 entryPoint = "org.test.myMain"

 // Target-specific options
 target('linux_x64') {
 linkerOpts '-L/linux/lib/path'
 }

 // Targets independent options
 allTargets {
 linkerOpts '-L/common/lib/path'
 }

 dependencies {

 // Dependency on a published Kotlin/Native library.
 implementation 'org.test:mylib:1.0'

 // Dependency on a project
 implementation project('library')

 // Cinterop dependency
 cinterop('interop-name') {
 // Def-file describing the native API.
 // The default path is src/main/c_interop/<interop-name>.def
 defFile project.file("deffile.def")

 // Package to place the Kotlin API generated.
 packageName 'org.sample'

 // Options to be passed to compiler and linker by cinterop tool.
 compilerOpts 'Options for native stubs compilation'
 linkerOpts 'Options for native stubs'

 // Additional headers to parse.
 headers project.files('header1.h', 'header2.h')

 // Directories to look for headers.
 includeDirs {

417

 includeDirs {
 // All objects accepted by the Project.file method may be used with both
options.

 // Directories for header search (an analogue of the -I<path> compiler
option).
 allHeaders 'path1', 'path2'

 // Additional directories to search headers listed in the 'headerFilter'
def-file option.
 // -headerFilterAdditionalSearchPrefix command line option analogue.
 headerFilterOnly 'path1', 'path2'
 }
 // A shortcut for includeDirs.allHeaders.
 includeDirs "include/directory" "another/directory"

 // Pass additional command line options to the cinterop tool.
 extraOpts '-verbose'

 // Additional configuration for Linux.
 target('linux') {
 compilerOpts 'Linux-specific options'
 }
 }
 }

 // Additional pom settings for publication.
 pom {
 withXml {
 def root = asNode()
 root.appendNode('name', 'My library')
 root.appendNode('description', 'A Kotlin/Native library')
 }
 }

 // Additional options passed to the compiler.
 extraOpts '--time'
}

418

Currently the Kotlin/Native compiler produces debug info compatible with the DWARF 2
speci cation, so modern debugger tools can perform the following operations:

breakpoints

stepping

inspection of type information

variable inspection

To produce binaries with the Kotlin/Native compiler it's su cient to use the -g option on the

command line.
Example:

0:b-debugger-fixes:minamoto@unit-703(0)# cat - > hello.kt
fun main(args: Array<String>) {
 println("Hello world")
 println("I need your clothes, your boots and your motocycle")
}
0:b-debugger-fixes:minamoto@unit-703(0)# dist/bin/konanc -g hello.kt -o terminator
KtFile: hello.kt
0:b-debugger-fixes:minamoto@unit-703(0)# lldb terminator.kexe
(lldb) target create "terminator.kexe"
Current executable set to 'terminator.kexe' (x86_64).
(lldb) b kfun:main(kotlin.Array<kotlin.String>)
Breakpoint 1: where = terminator.kexe`kfun:main(kotlin.Array<kotlin.String>) + 4 at
hello.kt:2, address = 0x00000001000012e4
(lldb) r
Process 28473 launched: '/Users/minamoto/ws/.git-trees/debugger-fixes/terminator.kexe'
(x86_64)
Process 28473 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
 frame #0: 0x00000001000012e4 terminator.kexe`kfun:main(kotlin.Array<kotlin.String>)
at hello.kt:2
 1 fun main(args: Array<String>) {
-> 2 println("Hello world")
 3 println("I need your clothes, your boots and your motocycle")
 4 }
(lldb) n
Hello world
Process 28473 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = step over
 frame #0: 0x00000001000012f0 terminator.kexe`kfun:main(kotlin.Array<kotlin.String>)
at hello.kt:3
 1 fun main(args: Array<String>) {
 2 println("Hello world")
-> 3 println("I need your clothes, your boots and your motocycle")
 4 }
(lldb)

Debugging

—

—

—

—

Producing binaries with debug info with Kotlin/Native compiler

Breakpoints

419

Modern debuggers provide several ways to set a breakpoint, see below for a tool-by-tool
breakdown:

by name

(lldb) b -n kfun:main(kotlin.Array<kotlin.String>)
Breakpoint 4: where = terminator.kexe`kfun:main(kotlin.Array<kotlin.String>) + 4 at
hello.kt:2, address = 0x00000001000012e4

-n is optional, this ag is applied by default

by location (lename, line number)

(lldb) b -f hello.kt -l 1
Breakpoint 1: where = terminator.kexe`kfun:main(kotlin.Array<kotlin.String>) + 4 at
hello.kt:2, address = 0x00000001000012e4

by address

(lldb) b -a 0x00000001000012e4
Breakpoint 2: address = 0x00000001000012e4

by regex, you might nd it useful for debugging generated artifacts, like lambda etc. (where
used # symbol in name).

3: regex = 'main\(', locations = 1
 3.1: where = terminator.kexe`kfun:main(kotlin.Array<kotlin.String>) + 4 at hello.kt:2,
address = terminator.kexe[0x00000001000012e4], unresolved, hit count = 0

by regex

(gdb) rbreak main(
Breakpoint 1 at 0x1000109b4
struct ktype:kotlin.Unit &kfun:main(kotlin.Array<kotlin.String>);

by name unusable, because : is a separator for the breakpoint by location

(gdb) b kfun:main(kotlin.Array<kotlin.String>)
No source file named kfun.
Make breakpoint pending on future shared library load? (y or [n]) y
Breakpoint 1 (kfun:main(kotlin.Array<kotlin.String>)) pending

by location

(gdb) b hello.kt:1
Breakpoint 2 at 0x100001704: file /Users/minamoto/ws/.git-trees/hello.kt, line 1.

by address

lldb

—

—

—

—

gdb

—

—

—

—

420

(gdb) b *0x100001704
Note: breakpoint 2 also set at pc 0x100001704.
Breakpoint 3 at 0x100001704: file /Users/minamoto/ws/.git-trees/hello.kt, line 2.

Stepping functions works mostly the same way as for C/C++ programs

Variable inspections for var variables works out of the box for primitive types. For non-primitive
types there are custom pretty printers for lldb in konan_lldb.py :

λ cat main.kt | nl
 1 fun main(args: Array<String>) {
 2 var x = 1
 3 var y = 2
 4 var p = Point(x, y)
 5 println("p = $p")
 6 }

 7 data class Point(val x: Int, val y: Int)

λ lldb ./program.kexe -o 'b main.kt:5' -o
(lldb) target create "./program.kexe"
Current executable set to './program.kexe' (x86_64).
(lldb) b main.kt:5
Breakpoint 1: where = program.kexe`kfun:main(kotlin.Array<kotlin.String>) + 289 at
main.kt:5, address = 0x000000000040af11
(lldb) r
Process 4985 stopped
* thread #1, name = 'program.kexe', stop reason = breakpoint 1.1
 frame #0: program.kexe`kfun:main(kotlin.Array<kotlin.String>) at main.kt:5
 2 var x = 1
 3 var y = 2
 4 var p = Point(x, y)
-> 5 println("p = $p")
 6 }
 7
 8 data class Point(val x: Int, val y: Int)

Process 4985 launched: './program.kexe' (x86_64)
(lldb) fr var
(int) x = 1
(int) y = 2
(ObjHeader *) p = 0x00000000007643d8
(lldb) command script import dist/tools/konan_lldb.py
(lldb) fr var
(int) x = 1
(int) y = 2
(ObjHeader *) p = Point(x=1, y=2)
(lldb) p p
(ObjHeader *) $2 = Point(x=1, y=2)
(lldb)

Stepping

Variable inspection

421

Getting representation of the object variable (var) could also be done using the built-in runtime
function Konan_DebugPrint (this approach also works for gdb, using a module of command

syntax):

0:b-debugger-fixes:minamoto@unit-703(0)# cat ../debugger-plugin/1.kt | nl -p
 1 fun foo(a:String, b:Int) = a + b
 2 fun one() = 1
 3 fun main(arg:Array<String>) {
 4 var a_variable = foo("(a_variable) one is ", 1)
 5 var b_variable = foo("(b_variable) two is ", 2)
 6 var c_variable = foo("(c_variable) two is ", 3)
 7 var d_variable = foo("(d_variable) two is ", 4)
 8 println(a_variable)
 9 println(b_variable)
 10 println(c_variable)
 11 println(d_variable)
 12 }
0:b-debugger-fixes:minamoto@unit-703(0)# lldb ./program.kexe -o 'b -f 1.kt -l 9' -o r
(lldb) target create "./program.kexe"
Current executable set to './program.kexe' (x86_64).
(lldb) b -f 1.kt -l 9
Breakpoint 1: where = program.kexe`kfun:main(kotlin.Array<kotlin.String>) + 463 at
1.kt:9, address = 0x0000000100000dbf
(lldb) r
(a_variable) one is 1
Process 80496 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
 frame #0: 0x0000000100000dbf program.kexe`kfun:main(kotlin.Array<kotlin.String>) at
1.kt:9
 6 var c_variable = foo("(c_variable) two is ", 3)
 7 var d_variable = foo("(d_variable) two is ", 4)
 8 println(a_variable)
-> 9 println(b_variable)
 10 println(c_variable)
 11 println(d_variable)
 12 }

Process 80496 launched: './program.kexe' (x86_64)
(lldb) expression -- Konan_DebugPrint(a_variable)
(a_variable) one is 1(KInt) $0 = 0
(lldb)

performance of Python bindings.

Note: Supporting the DWARF 2 speci cation means that the debugger tool recognizes Kotlin as
C89, because before the DWARF 5 speci cation, there is no identi er for the Kotlin language type
in speci cation.

Known issues

—

422

A: De ne a top level function fun main(args: Array<String>) or just fun main() if you

are not interested in passed arguments, please ensure it's not in a package. Also compiler switch
-entry could be used to make any function taking Array<String> or no arguments and

return Unit as an entry point.

A: Kotlin/Native provides an automated memory management scheme, similar to what Java or
Swift provides. The current implementation includes an automated reference counter with a
cycle collector to collect cyclical garbage.

A: Use the -produce dynamic compiler switch, or binaries.sharedLib() in Gradle, i.e.

targets {
 fromPreset(presets.iosArm64, 'mylib') {
 binaries.sharedLib()
 }
}

It will produce a platform-speci c shared object (.so on Linux, .dylib on macOS, and .dll on
Windows targets) and a C language header, allowing the use of all public APIs available in your
Kotlin/Native program from C/C++ code. See samples/python_extension for an example of

using such a shared object to provide a bridge between Python and Kotlin/Native.

A: Use the -produce static compiler switch, or binaries.staticLib() in Gradle, i.e.

targets {
 fromPreset(presets.iosArm64, 'mylib') {
 binaries.staticLib()
 }
}

It will produce a platform-speci c static object (.a library format) and a C language header,
allowing you to use all the public APIs available in your Kotlin/Native program from C/C++ code.

A: As Kotlin/Native needs to download a platform speci c toolchain, you need to specify -

Dhttp.proxyHost=xxx -Dhttp.proxyPort=xxx as the compiler's or gradlew arguments,

or set it via the JAVA_OPTS environment variable.

Q: How do I run my program?

Q: What is Kotlin/Native memory management model?

Q: How do I create a shared library?

Q: How do I create a static library or an object le?

Q: How do I run Kotlin/Native behind a corporate proxy?

423

A: Use the -module-name compiler option or matching Gradle DSL statement, i.e.

targets {
 fromPreset(presets.iosArm64, 'myapp') {
 binaries.framework()
 compilations.main.extraOpts '-module-name', 'TheName'
 }
}

A: Use the baseName option. This will also set the module name.

targets {
 fromPreset(presets.iosArm64, 'myapp') {
 binaries {
 framework {
 baseName = "TheName"
 }
 }
 }
}

A: By default gradle plugin adds it on iOS target.

For debug build it embeds placeholder LLVM IR data as a marker.

For release build it embeds bitcode as data.

Or commandline arguments: -Xembed-bitcode (for release) and -Xembed-bitcode-

marker (debug)

Setting this in a Gradle DSL:

targets {
 fromPreset(presets.iosArm64, 'myapp') {
 binaries {
 framework {
 // Use "marker" to embed the bitcode marker (for debug builds).
 // Use "disable" to disable embedding.
 embedBitcode "bitcode" // for release binaries.
 }
 }
 }
}

These options have nearly the same e ect as clang's -fembed-bitcode / -fembed-bitcode-

marker and swiftc's -embed-bitcode / -embed-bitcode-marker .

Q: How do I specify a custom Objective-C pre x/name for my Kotlin framework?

Q: How do I rename the iOS framework? (default name is <project
name>.framework)

Q: How do I enable bitcode for my Kotlin framework?

—

—

424

A: It likely happens, because you are trying to mutate a frozen object. An object can transfer to
the frozen state either explicitly, as objects reachable from objects on which the
kotlin.native.concurrent.freeze is called, or implicitly (i.e. reachable from enum or

global singleton object - see the next question).

A: Currently, singleton objects are immutable (i.e. frozen after creation), and it's generally
considered good practise to have the global state immutable. If for some reason you need a
mutable state inside such an object, use the @konan.ThreadLocal annotation on the object.

Also the kotlin.native.concurrent.AtomicReference class could be used to store

di erent pointers to frozen objects in a frozen object and automatically update them.

A: One of the following should be done:

For the CLI, you can compile using gradle as stated in the README (and if you get errors, you can try to do a
./gradlew clean):

For Gradle, you can use Gradle composite builds like this:

Q: Why do I see InvalidMutabilityException?

Q: How do I make a singleton object mutable?

Q: How can I compile my project against the Kotlin/Native master?

425

https://docs.gradle.org/current/userguide/composite_builds.html

Coroutines
Kotlin, as a language, provides only minimal low-level APIs in its standard library to enable
various other libraries to utilize coroutines. Unlike many other languages with similar capabilities,
async and await are not keywords in Kotlin and are not even part of its standard library.

Moreover, Kotlin's concept of suspending function provides a safer and less error-prone
abstraction for asynchronous operations than futures and promises.

kotlinx.coroutines is a rich library for coroutines developed by JetBrains. It contains a

number of high-level coroutine-enabled primitives that this guide covers, including launch ,

async and others.

This is a guide on core features of kotlinx.coroutines with a series of examples, divided up

into di erent topics.

In order to use coroutines as well as follow the examples in this guide, you need to add a
dependency on kotlinx-coroutines-core module as explained in the project README.

Basics

Cancellation and Timeouts

Composing Suspending Functions

Coroutine Context and Dispatchers

Asynchronous Flow

Channels

Exception Handling and Supervision

Shared Mutable State and Concurrency

Select Expression (experimental)

Guide to UI programming with coroutines

Guide to reactive streams with coroutines

Coroutines design document (KEEP)

Full kotlinx.coroutines API reference

Table of contents
—

—

—

—

—

—

—

—

—

Additional references
—

—

—

—

426

https://github.com/kotlin/kotlinx.coroutines/blob/master/README.md#using-in-your-projects
https://github.com/kotlin/kotlinx.coroutines/blob/master/ui/coroutines-guide-ui.md
https://github.com/kotlin/kotlinx.coroutines/blob/master/reactive/coroutines-guide-reactive.md
https://github.com/Kotlin/kotlin-coroutines/blob/master/kotlin-coroutines-informal.md
https://kotlin.github.io/kotlinx.coroutines

Table of contents

Coroutine Basics

Your rst coroutine

Bridging blocking and non-blocking worlds

Waiting for a job

Structured concurrency

Scope builder

Extract function refactoring

Coroutines ARE light-weight

Global coroutines are like daemon threads

This section covers basic coroutine concepts.

Run the following code:

import kotlinx.coroutines.*

fun main() {
 GlobalScope.launch { // launch a new coroutine in background and continue
 delay(1000L) // non-blocking delay for 1 second (default time unit is ms)
 println("World!") // print after delay
 }
 println("Hello,") // main thread continues while coroutine is delayed
 Thread.sleep(2000L) // block main thread for 2 seconds to keep JVM alive
}

You can get full code here.

You will see the following result:

Hello,
World!

Essentially, coroutines are light-weight threads. They are launched with launch coroutine builder in
a context of some CoroutineScope. Here we are launching a new coroutine in the GlobalScope,
meaning that the lifetime of the new coroutine is limited only by the lifetime of the whole
application.

You can achieve the same result replacing GlobalScope.launch { ... } with thread {

... } and delay(...) with Thread.sleep(...) . Try it.

—

—

—

—

—

—

—

—

—

Coroutine Basics

Your rst coroutine

427

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-basic-01.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-global-scope/index.html

If you start by replacing GlobalScope.launch by thread , the compiler produces the

following error:

Error: Kotlin: Suspend functions are only allowed to be called from a coroutine or another
suspend function

That is because delay is a special suspending function that does not block a thread, but suspends
coroutine and it can be only used from a coroutine.

The rst example mixes non-blocking delay(...) and blocking Thread.sleep(...) in the

same code. It is easy to lose track of which one is blocking and which one is not. Let's be explicit
about blocking using runBlocking coroutine builder:

import kotlinx.coroutines.*

fun main() {
 GlobalScope.launch { // launch a new coroutine in background and continue
 delay(1000L)
 println("World!")
 }
 println("Hello,") // main thread continues here immediately
 runBlocking { // but this expression blocks the main thread
 delay(2000L) // ... while we delay for 2 seconds to keep JVM alive
 }
}

You can get full code here.

The result is the same, but this code uses only non-blocking delay. The main thread invoking
runBlocking blocks until the coroutine inside runBlocking completes.

This example can be also rewritten in a more idiomatic way, using runBlocking to wrap the

execution of the main function:

import kotlinx.coroutines.*

fun main() = runBlocking<Unit> { // start main coroutine
 GlobalScope.launch { // launch a new coroutine in background and continue
 delay(1000L)
 println("World!")
 }
 println("Hello,") // main coroutine continues here immediately
 delay(2000L) // delaying for 2 seconds to keep JVM alive
}

You can get full code here.

Bridging blocking and non-blocking worlds

428

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/delay.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-basic-02.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/delay.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-basic-02b.kt

Here runBlocking<Unit> { ... } works as an adaptor that is used to start the top-level

main coroutine. We explicitly specify its Unit return type, because a well-formed main function

in Kotlin has to return Unit .

This is also a way to write unit tests for suspending functions:

class MyTest {
 @Test
 fun testMySuspendingFunction() = runBlocking<Unit> {
 // here we can use suspending functions using any assertion style that we like
 }
}

Delaying for a time while another coroutine is working is not a good approach. Let's explicitly
wait (in a non-blocking way) until the background Job that we have launched is complete:

val job = GlobalScope.launch { // launch a new coroutine and keep a reference to its Job
 delay(1000L)
 println("World!")
}
println("Hello,")
job.join() // wait until child coroutine completes

You can get full code here.

Now the result is still the same, but the code of the main coroutine is not tied to the duration of
the background job in any way. Much better.

There is still something to be desired for practical usage of coroutines. When we use
GlobalScope.launch , we create a top-level coroutine. Even though it is light-weight, it still

consumes some memory resources while it runs. If we forget to keep a reference to the newly
launched coroutine it still runs. What if the code in the coroutine hangs (for example, we
erroneously delay for too long), what if we launched too many coroutines and ran out of
memory? Having to manually keep references to all the launched coroutines and join them is
error-prone.

There is a better solution. We can use structured concurrency in our code. Instead of launching
coroutines in the GlobalScope, just like we usually do with threads (threads are always global), we
can launch coroutines in the speci c scope of the operation we are performing.

Waiting for a job

Structured concurrency

429

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-basic-03.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/join.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-global-scope/index.html

In our example, we have main function that is turned into a coroutine using runBlocking

coroutine builder. Every coroutine builder, including runBlocking , adds an instance of

CoroutineScope to the scope of its code block. We can launch coroutines in this scope without
having to join them explicitly, because an outer coroutine (runBlocking in our example)

does not complete until all the coroutines launched in its scope complete. Thus, we can make our
example simpler:

import kotlinx.coroutines.*

fun main() = runBlocking { // this: CoroutineScope
 launch { // launch a new coroutine in the scope of runBlocking
 delay(1000L)
 println("World!")
 }
 println("Hello,")
}

You can get full code here.

In addition to the coroutine scope provided by di erent builders, it is possible to declare your
own scope using coroutineScope builder. It creates a coroutine scope and does not complete
until all launched children complete. The main di erence between runBlocking and
coroutineScope is that the latter does not block the current thread while waiting for all children
to complete.

import kotlinx.coroutines.*

fun main() = runBlocking { // this: CoroutineScope
 launch {
 delay(200L)
 println("Task from runBlocking")
 }

 coroutineScope { // Creates a coroutine scope
 launch {
 delay(500L)
 println("Task from nested launch")
 }

 delay(100L)
 println("Task from coroutine scope") // This line will be printed before the
nested launch
 }

 println("Coroutine scope is over") // This line is not printed until the nested
launch completes
}

You can get full code here.

Scope builder

430

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-basic-03s.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-basic-04.kt

Let's extract the block of code inside launch { ... } into a separate function. When you

perform "Extract function" refactoring on this code you get a new function with suspend

modi er. That is your rst suspending function. Suspending functions can be used inside
coroutines just like regular functions, but their additional feature is that they can, in turn, use
other suspending functions, like delay in this example, to suspend execution of a coroutine.

import kotlinx.coroutines.*

fun main() = runBlocking {
 launch { doWorld() }
 println("Hello,")
}

// this is your first suspending function
suspend fun doWorld() {
 delay(1000L)
 println("World!")
}

You can get full code here.

But what if the extracted function contains a coroutine builder which is invoked on the current
scope? In this case suspend modi er on the extracted function is not enough. Making

doWorld an extension method on CoroutineScope is one of the solutions, but it may not

always be applicable as it does not make API clearer. The idiomatic solution is to have either an
explicit CoroutineScope as a eld in a class containing the target function or an implicit one

when the outer class implements CoroutineScope . As a last resort,

CoroutineScope(coroutineContext) can be used, but such approach is structurally unsafe because
you no longer have control on the scope of execution of this method. Only private APIs can use
this builder.

Run the following code:

import kotlinx.coroutines.*

fun main() = runBlocking {
 repeat(100_000) { // launch a lot of coroutines
 launch {
 delay(1000L)
 print(".")
 }
 }
}

You can get full code here.

Extract function refactoring

Coroutines ARE light-weight

431

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-basic-05.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-basic-06.kt

It launches 100K coroutines and, after a second, each coroutine prints a dot. Now, try that with
threads. What would happen? (Most likely your code will produce some sort of out-of-memory
error)

The following code launches a long-running coroutine in GlobalScope that prints "I'm sleeping"
twice a second and then returns from the main function after some delay:

GlobalScope.launch {
 repeat(1000) { i ->
 println("I'm sleeping $i ...")
 delay(500L)
 }
}
delay(1300L) // just quit after delay

You can get full code here.

You can run and see that it prints three lines and terminates:

I'm sleeping 0 ...
I'm sleeping 1 ...
I'm sleeping 2 ...

Active coroutines that were launched in GlobalScope do not keep the process alive. They are like
daemon threads.

Global coroutines are like daemon threads

432

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-global-scope/index.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-basic-07.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-global-scope/index.html

Table of contents

Cancellation and Timeouts

Cancelling coroutine execution

Cancellation is cooperative

Making computation code cancellable

Closing resources with finally

Run non-cancellable block

Timeout

This section covers coroutine cancellation and timeouts.

In a long-running application you might need ne-grained control on your background
coroutines. For example, a user might have closed the page that launched a coroutine and now
its result is no longer needed and its operation can be cancelled. The launch function returns a
Job that can be used to cancel the running coroutine:

val job = launch {
 repeat(1000) { i ->
 println("job: I'm sleeping $i ...")
 delay(500L)
 }
}
delay(1300L) // delay a bit
println("main: I'm tired of waiting!")
job.cancel() // cancels the job
job.join() // waits for job's completion
println("main: Now I can quit.")

You can get full code here.

It produces the following output:

job: I'm sleeping 0 ...
job: I'm sleeping 1 ...
job: I'm sleeping 2 ...
main: I'm tired of waiting!
main: Now I can quit.

As soon as main invokes job.cancel , we don't see any output from the other coroutine

because it was cancelled. There is also a Job extension function cancelAndJoin that combines
cancel and join invocations.

—

—

—

—

—

—

—

Cancellation and Timeouts

Cancelling coroutine execution

433

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-cancel-01.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/cancel-and-join.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/cancel.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/join.html

Coroutine cancellation is cooperative. A coroutine code has to cooperate to be cancellable. All the
suspending functions in kotlinx.coroutines are cancellable. They check for cancellation of

coroutine and throw CancellationException when cancelled. However, if a coroutine is working in
a computation and does not check for cancellation, then it cannot be cancelled, like the following
example shows:

val startTime = System.currentTimeMillis()
val job = launch(Dispatchers.Default) {
 var nextPrintTime = startTime
 var i = 0
 while (i < 5) { // computation loop, just wastes CPU
 // print a message twice a second
 if (System.currentTimeMillis() >= nextPrintTime) {
 println("job: I'm sleeping ${i++} ...")
 nextPrintTime += 500L
 }
 }
}
delay(1300L) // delay a bit
println("main: I'm tired of waiting!")
job.cancelAndJoin() // cancels the job and waits for its completion
println("main: Now I can quit.")

You can get full code here.

Run it to see that it continues to print "I'm sleeping" even after cancellation until the job
completes by itself after ve iterations.

There are two approaches to making computation code cancellable. The rst one is to
periodically invoke a suspending function that checks for cancellation. There is a yield function
that is a good choice for that purpose. The other one is to explicitly check the cancellation status.
Let us try the latter approach.

Replace while (i < 5) in the previous example with while (isActive) and rerun it.

Cancellation is cooperative

Making computation code cancellable

434

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-cancellation-exception/index.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-cancel-02.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/yield.html

val startTime = System.currentTimeMillis()
val job = launch(Dispatchers.Default) {
 var nextPrintTime = startTime
 var i = 0
 while (isActive) { // cancellable computation loop
 // print a message twice a second
 if (System.currentTimeMillis() >= nextPrintTime) {
 println("job: I'm sleeping ${i++} ...")
 nextPrintTime += 500L
 }
 }
}
delay(1300L) // delay a bit
println("main: I'm tired of waiting!")
job.cancelAndJoin() // cancels the job and waits for its completion
println("main: Now I can quit.")

You can get full code here.

As you can see, now this loop is cancelled. isActive is an extension property available inside the
coroutine via the CoroutineScope object.

Cancellable suspending functions throw CancellationException on cancellation which can be
handled in the usual way. For example, try {...} finally {...} expression and Kotlin

use function execute their nalization actions normally when a coroutine is cancelled:

val job = launch {
 try {
 repeat(1000) { i ->
 println("job: I'm sleeping $i ...")
 delay(500L)
 }
 } finally {
 println("job: I'm running finally")
 }
}
delay(1300L) // delay a bit
println("main: I'm tired of waiting!")
job.cancelAndJoin() // cancels the job and waits for its completion
println("main: Now I can quit.")

You can get full code here.

Both join and cancelAndJoin wait for all nalization actions to complete, so the example above
produces the following output:

Closing resources with finally

435

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-cancel-03.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/is-active.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-cancellation-exception/index.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-cancel-04.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/join.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/cancel-and-join.html

job: I'm sleeping 0 ...
job: I'm sleeping 1 ...
job: I'm sleeping 2 ...
main: I'm tired of waiting!
job: I'm running finally
main: Now I can quit.

Any attempt to use a suspending function in the finally block of the previous example causes

CancellationException, because the coroutine running this code is cancelled. Usually, this is not a
problem, since all well-behaving closing operations (closing a le, cancelling a job, or closing any
kind of a communication channel) are usually non-blocking and do not involve any suspending
functions. However, in the rare case when you need to suspend in a cancelled coroutine you can
wrap the corresponding code in withContext(NonCancellable) {...} using withContext

function and NonCancellable context as the following example shows:

val job = launch {
 try {
 repeat(1000) { i ->
 println("job: I'm sleeping $i ...")
 delay(500L)
 }
 } finally {
 withContext(NonCancellable) {
 println("job: I'm running finally")
 delay(1000L)
 println("job: And I've just delayed for 1 sec because I'm non-cancellable")
 }
 }
}
delay(1300L) // delay a bit
println("main: I'm tired of waiting!")
job.cancelAndJoin() // cancels the job and waits for its completion
println("main: Now I can quit.")

You can get full code here.

The most obvious practical reason to cancel execution of a coroutine is because its execution
time has exceeded some timeout. While you can manually track the reference to the
corresponding Job and launch a separate coroutine to cancel the tracked one after delay, there is
a ready to use withTimeout function that does it. Look at the following example:

withTimeout(1300L) {
 repeat(1000) { i ->
 println("I'm sleeping $i ...")
 delay(500L)
 }
}

Run non-cancellable block

Timeout

436

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-cancellation-exception/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-context.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-non-cancellable.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-cancel-05.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-timeout.html

You can get full code here.

It produces the following output:

I'm sleeping 0 ...
I'm sleeping 1 ...
I'm sleeping 2 ...
Exception in thread "main" kotlinx.coroutines.TimeoutCancellationException: Timed out
waiting for 1300 ms

The TimeoutCancellationException that is thrown by withTimeout is a subclass of

CancellationException. We have not seen its stack trace printed on the console before. That is
because inside a cancelled coroutine CancellationException is considered to be a normal

reason for coroutine completion. However, in this example we have used withTimeout right

inside the main function.

Since cancellation is just an exception, all resources are closed in the usual way. You can wrap the
code with timeout in a try {...} catch (e: TimeoutCancellationException) {...}

block if you need to do some additional action speci cally on any kind of timeout or use the
withTimeoutOrNull function that is similar to withTimeout but returns null on timeout instead

of throwing an exception:

val result = withTimeoutOrNull(1300L) {
 repeat(1000) { i ->
 println("I'm sleeping $i ...")
 delay(500L)
 }
 "Done" // will get cancelled before it produces this result
}
println("Result is $result")

You can get full code here.

There is no longer an exception when running this code:

I'm sleeping 0 ...
I'm sleeping 1 ...
I'm sleeping 2 ...
Result is null

437

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-cancel-06.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-timeout.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-cancellation-exception/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-timeout-or-null.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-timeout.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-cancel-07.kt

Table of contents

Composing Suspending Functions

Sequential by default

Concurrent using async

Lazily started async

Async-style functions

Structured concurrency with async

This section covers various approaches to composition of suspending functions.

Assume that we have two suspending functions de ned elsewhere that do something useful like
some kind of remote service call or computation. We just pretend they are useful, but actually
each one just delays for a second for the purpose of this example:

suspend fun doSomethingUsefulOne(): Int {
 delay(1000L) // pretend we are doing something useful here
 return 13
}

suspend fun doSomethingUsefulTwo(): Int {
 delay(1000L) // pretend we are doing something useful here, too
 return 29
}

What do we do if we need them to be invoked sequentially — rst doSomethingUsefulOne and

then doSomethingUsefulTwo , and compute the sum of their results? In practice we do this if

we use the result of the rst function to make a decision on whether we need to invoke the
second one or to decide on how to invoke it.

We use a normal sequential invocation, because the code in the coroutine, just like in the regular
code, is sequential by default. The following example demonstrates it by measuring the total time
it takes to execute both suspending functions:

val time = measureTimeMillis {
 val one = doSomethingUsefulOne()
 val two = doSomethingUsefulTwo()
 println("The answer is ${one + two}")
}
println("Completed in $time ms")

You can get full code here.

It produces something like this:

—

—

—

—

—

—

Composing Suspending Functions

Sequential by default

438

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-compose-01.kt

The answer is 42
Completed in 2017 ms

What if there are no dependencies between invocations of doSomethingUsefulOne and

doSomethingUsefulTwo and we want to get the answer faster, by doing both concurrently?

This is where async comes to help.

Conceptually, async is just like launch. It starts a separate coroutine which is a light-weight thread
that works concurrently with all the other coroutines. The di erence is that launch returns a

Job and does not carry any resulting value, while async returns a Deferred — a light-weight

non-blocking future that represents a promise to provide a result later. You can use .await()

on a deferred value to get its eventual result, but Deferred is also a Job , so you can cancel it if

needed.

val time = measureTimeMillis {
 val one = async { doSomethingUsefulOne() }
 val two = async { doSomethingUsefulTwo() }
 println("The answer is ${one.await() + two.await()}")
}
println("Completed in $time ms")

You can get full code here.

It produces something like this:

The answer is 42
Completed in 1017 ms

This is twice as fast, because the two coroutines execute concurrently. Note that concurrency with
coroutines is always explicit.

Optionally, async can be made lazy by setting its start parameter to CoroutineStart.LAZY. In

this mode it only starts the coroutine when its result is required by await, or if its Job 's start

function is invoked. Run the following example:

val time = measureTimeMillis {
 val one = async(start = CoroutineStart.LAZY) { doSomethingUsefulOne() }
 val two = async(start = CoroutineStart.LAZY) { doSomethingUsefulTwo() }
 // some computation
 one.start() // start the first one
 two.start() // start the second one
 println("The answer is ${one.await() + two.await()}")
}
println("Completed in $time ms")

Concurrent using async

Lazily started async

439

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/index.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-compose-02.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-start/-l-a-z-y.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/await.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/start.html

You can get full code here.

It produces something like this:

The answer is 42
Completed in 1017 ms

So, here the two coroutines are de ned but not executed as in the previous example, but the
control is given to the programmer on when exactly to start the execution by calling start. We

rst start one , then start two , and then await for the individual coroutines to nish.

Note that if we just call await in println without rst calling start on individual coroutines, this

will lead to sequential behavior, since await starts the coroutine execution and waits for its nish,
which is not the intended use-case for laziness. The use-case for async(start =

CoroutineStart.LAZY) is a replacement for the standard lazy function in cases when

computation of the value involves suspending functions.

We can de ne async-style functions that invoke doSomethingUsefulOne and

doSomethingUsefulTwo asynchronously using the async coroutine builder with an explicit

GlobalScope reference. We name such functions with the "…Async" su x to highlight the fact that
they only start asynchronous computation and one needs to use the resulting deferred value to
get the result.

// The result type of somethingUsefulOneAsync is Deferred<Int>
fun somethingUsefulOneAsync() = GlobalScope.async {
 doSomethingUsefulOne()
}

// The result type of somethingUsefulTwoAsync is Deferred<Int>
fun somethingUsefulTwoAsync() = GlobalScope.async {
 doSomethingUsefulTwo()
}

Note that these xxxAsync functions are not suspending functions. They can be used from

anywhere. However, their use always implies asynchronous (here meaning concurrent) execution
of their action with the invoking code.

The following example shows their use outside of coroutine:

Async-style functions

440

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-compose-03.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/start.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/await.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/start.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/await.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-global-scope/index.html

// note that we don't have `runBlocking` to the right of `main` in this example
fun main() {
 val time = measureTimeMillis {
 // we can initiate async actions outside of a coroutine
 val one = somethingUsefulOneAsync()
 val two = somethingUsefulTwoAsync()
 // but waiting for a result must involve either suspending or blocking.
 // here we use `runBlocking { ... }` to block the main thread while waiting for
the result
 runBlocking {
 println("The answer is ${one.await() + two.await()}")
 }
 }
 println("Completed in $time ms")
}

You can get full code here.

This programming style with async functions is provided here only for illustration, because it
is a popular style in other programming languages. Using this style with Kotlin coroutines is
strongly discouraged for the reasons explained below.

Consider what happens if between the val one = somethingUsefulOneAsync() line and

one.await() expression there is some logic error in the code and the program throws an

exception and the operation that was being performed by the program aborts. Normally, a global
error-handler could catch this exception, log and report the error for developers, but the
program could otherwise continue doing other operations. But here we have
somethingUsefulOneAsync still running in the background, even though the operation that

initiated it was aborted. This problem does not happen with structured concurrency, as shown in
the section below.

Let us take the Concurrent using async example and extract a function that concurrently
performs doSomethingUsefulOne and doSomethingUsefulTwo and returns the sum of

their results. Because the async coroutine builder is de ned as an extension on CoroutineScope,
we need to have it in the scope and that is what the coroutineScope function provides:

suspend fun concurrentSum(): Int = coroutineScope {
 val one = async { doSomethingUsefulOne() }
 val two = async { doSomethingUsefulTwo() }
 one.await() + two.await()
}

This way, if something goes wrong inside the code of the concurrentSum function and it

throws an exception, all the coroutines that were launched in its scope will be cancelled.

Structured concurrency with async

441

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-compose-04.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html

val time = measureTimeMillis {
 println("The answer is ${concurrentSum()}")
}
println("Completed in $time ms")

You can get full code here.

We still have concurrent execution of both operations, as evident from the output of the above
main function:

The answer is 42
Completed in 1017 ms

Cancellation is always propagated through coroutines hierarchy:

import kotlinx.coroutines.*

fun main() = runBlocking<Unit> {
 try {
 failedConcurrentSum()
 } catch(e: ArithmeticException) {
 println("Computation failed with ArithmeticException")
 }
}

suspend fun failedConcurrentSum(): Int = coroutineScope {
 val one = async<Int> {
 try {
 delay(Long.MAX_VALUE) // Emulates very long computation
 42
 } finally {
 println("First child was cancelled")
 }

442

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-compose-05.kt

 }
 val two = async<Int> {
 println("Second child throws an exception")
 throw ArithmeticException()
 }
 one.await() + two.await()
}

You can get full code here.

Note how both the rst async and the awaiting parent are cancelled on failure of one of the

children (namely, two):

Second child throws an exception
First child was cancelled
Computation failed with ArithmeticException

443

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-compose-06.kt

Table of contents

Coroutine Context and Dispatchers

Dispatchers and threads

Uncon ned vs con ned dispatcher

Debugging coroutines and threads

Jumping between threads

Job in the context

Children of a coroutine

Parental responsibilities

Naming coroutines for debugging

Combining context elements

Coroutine scope

Thread-local data

Coroutines always execute in some context represented by a value of the CoroutineContext type,
de ned in the Kotlin standard library.

The coroutine context is a set of various elements. The main elements are the Job of the
coroutine, which we've seen before, and its dispatcher, which is covered in this section.

The coroutine context includes a coroutine dispatcher (see CoroutineDispatcher) that determines
what thread or threads the corresponding coroutine uses for its execution. The coroutine
dispatcher can con ne coroutine execution to a speci c thread, dispatch it to a thread pool, or let
it run uncon ned.

All coroutine builders like launch and async accept an optional CoroutineContext parameter that
can be used to explicitly specify the dispatcher for the new coroutine and other context
elements.

Try the following example:

—

—

—

—

—

—

—

—

—

—

—

—

Coroutine Context and Dispatchers

Dispatchers and threads

444

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.coroutines/-coroutine-context/
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-dispatcher/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.coroutines/-coroutine-context/

launch { // context of the parent, main runBlocking coroutine
 println("main runBlocking : I'm working in thread
${Thread.currentThread().name}")
}
launch(Dispatchers.Unconfined) { // not confined -- will work with main thread
 println("Unconfined : I'm working in thread
${Thread.currentThread().name}")
}
launch(Dispatchers.Default) { // will get dispatched to DefaultDispatcher
 println("Default : I'm working in thread
${Thread.currentThread().name}")
}
launch(newSingleThreadContext("MyOwnThread")) { // will get its own new thread
 println("newSingleThreadContext: I'm working in thread
${Thread.currentThread().name}")
}

You can get full code here.

It produces the following output (maybe in di erent order):

Unconfined : I'm working in thread main
Default : I'm working in thread DefaultDispatcher-worker-1
newSingleThreadContext: I'm working in thread MyOwnThread
main runBlocking : I'm working in thread main

When launch { ... } is used without parameters, it inherits the context (and thus

dispatcher) from the CoroutineScope it is being launched from. In this case, it inherits the context
of the main runBlocking coroutine which runs in the main thread.

Dispatchers.Uncon ned is a special dispatcher that also appears to run in the main thread, but it

is, in fact, a di erent mechanism that is explained later.

The default dispatcher that is used when coroutines are launched in GlobalScope is represented
by Dispatchers.Default and uses a shared background pool of threads, so
launch(Dispatchers.Default) { ... } uses the same dispatcher as

GlobalScope.launch { ... } .

newSingleThreadContext creates a thread for the coroutine to run. A dedicated thread is a very
expensive resource. In a real application it must be either released, when no longer needed,
using the close function, or stored in a top-level variable and reused throughout the application.

The Dispatchers.Uncon ned coroutine dispatcher starts a coroutine in the caller thread, but only
until the rst suspension point. After suspension it resumes the coroutine in the thread that is
fully determined by the suspending function that was invoked. The uncon ned dispatcher is
appropriate for coroutines which neither consume CPU time nor update any shared data (like UI)
con ned to a speci c thread.

Uncon ned vs con ned dispatcher

445

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-01.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-unconfined.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-global-scope/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/new-single-thread-context.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-executor-coroutine-dispatcher/close.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-unconfined.html

On the other side, the dispatcher is inherited from the outer CoroutineScope by default. The
default dispatcher for the runBlocking coroutine, in particular, is con ned to the invoker thread,
so inheriting it has the e ect of con ning execution to this thread with predictable FIFO
scheduling.

launch(Dispatchers.Unconfined) { // not confined -- will work with main thread
 println("Unconfined : I'm working in thread ${Thread.currentThread().name}")
 delay(500)
 println("Unconfined : After delay in thread ${Thread.currentThread().name}")
}
launch { // context of the parent, main runBlocking coroutine
 println("main runBlocking: I'm working in thread ${Thread.currentThread().name}")
 delay(1000)
 println("main runBlocking: After delay in thread ${Thread.currentThread().name}")
}

You can get full code here.

Produces the output:

Unconfined : I'm working in thread main
main runBlocking: I'm working in thread main
Unconfined : After delay in thread kotlinx.coroutines.DefaultExecutor
main runBlocking: After delay in thread main

So, the coroutine with the context inherited from runBlocking {...} continues to execute in

the main thread, while the uncon ned one resumes in the default executor thread that the

delay function is using.

The uncon ned dispatcher is an advanced mechanism that can be helpful in certain corner
cases where dispatching of a coroutine for its execution later is not needed or produces
undesirable side-e ects, because some operation in a coroutine must be performed right
away. The uncon ned dispatcher should not be used in general code.

Coroutines can suspend on one thread and resume on another thread. Even with a single-
threaded dispatcher it might be hard to gure out what the coroutine was doing, where, and
when. The common approach to debugging applications with threads is to print the thread name
in the log le on each log statement. This feature is universally supported by logging frameworks.
When using coroutines, the thread name alone does not give much of a context, so
kotlinx.coroutines includes debugging facilities to make it easier.

Run the following code with -Dkotlinx.coroutines.debug JVM option:

Debugging coroutines and threads

446

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-02.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/delay.html

val a = async {
 log("I'm computing a piece of the answer")
 6
}
val b = async {
 log("I'm computing another piece of the answer")
 7
}
log("The answer is ${a.await() * b.await()}")

You can get full code here.

There are three coroutines. The main coroutine (#1) inside runBlocking and two coroutines

computing the deferred values a (#2) and b (#3). They are all executing in the context of

runBlocking and are con ned to the main thread. The output of this code is:

[main @coroutine#2] I'm computing a piece of the answer
[main @coroutine#3] I'm computing another piece of the answer
[main @coroutine#1] The answer is 42

The log function prints the name of the thread in square brackets, and you can see that it is the

main thread with the identi er of the currently executing coroutine appended to it. This

identi er is consecutively assigned to all created coroutines when the debugging mode is on.

Debugging mode is also turned on when JVM is run with -ea option. You can read more

about debugging facilities in the documentation of the DEBUG_PROPERTY_NAME property.

Run the following code with the -Dkotlinx.coroutines.debug JVM option (see debug):

newSingleThreadContext("Ctx1").use { ctx1 ->
 newSingleThreadContext("Ctx2").use { ctx2 ->
 runBlocking(ctx1) {
 log("Started in ctx1")
 withContext(ctx2) {
 log("Working in ctx2")
 }
 log("Back to ctx1")
 }
 }
}

You can get full code here.

It demonstrates several new techniques. One is using runBlocking with an explicitly speci ed
context, and the other one is using the withContext function to change the context of a coroutine
while still staying in the same coroutine, as you can see in the output below:

Jumping between threads

447

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-03.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-d-e-b-u-g_-p-r-o-p-e-r-t-y_-n-a-m-e.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-04.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-context.html

[Ctx1 @coroutine#1] Started in ctx1
[Ctx2 @coroutine#1] Working in ctx2
[Ctx1 @coroutine#1] Back to ctx1

Note that this example also uses the use function from the Kotlin standard library to release

threads created with newSingleThreadContext when they are no longer needed.

The coroutine's Job is part of its context, and can be retrieved from it using the
coroutineContext[Job] expression:

println("My job is ${coroutineContext[Job]}")

You can get full code here.

In the debug mode, it outputs something like this:

My job is "coroutine#1":BlockingCoroutine{Active}@6d311334

Note that isActive in CoroutineScope is just a convenient shortcut for
coroutineContext[Job]?.isActive == true .

When a coroutine is launched in the CoroutineScope of another coroutine, it inherits its context
via CoroutineScope.coroutineContext and the Job of the new coroutine becomes a child of the
parent coroutine's job. When the parent coroutine is cancelled, all its children are recursively
cancelled, too.

However, when GlobalScope is used to launch a coroutine, there is no parent for the job of the
new coroutine. It is therefore not tied to the scope it was launched from and operates
independently.

Job in the context

Children of a coroutine

448

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/new-single-thread-context.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-05.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/is-active.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/coroutine-context.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-global-scope/index.html

// launch a coroutine to process some kind of incoming request
val request = launch {
 // it spawns two other jobs, one with GlobalScope
 GlobalScope.launch {
 println("job1: I run in GlobalScope and execute independently!")
 delay(1000)
 println("job1: I am not affected by cancellation of the request")
 }
 // and the other inherits the parent context
 launch {
 delay(100)
 println("job2: I am a child of the request coroutine")
 delay(1000)
 println("job2: I will not execute this line if my parent request is cancelled")
 }
}
delay(500)
request.cancel() // cancel processing of the request
delay(1000) // delay a second to see what happens
println("main: Who has survived request cancellation?")

You can get full code here.

The output of this code is:

job1: I run in GlobalScope and execute independently!
job2: I am a child of the request coroutine
job1: I am not affected by cancellation of the request
main: Who has survived request cancellation?

A parent coroutine always waits for completion of all its children. A parent does not have to
explicitly track all the children it launches, and it does not have to use Job.join to wait for them at
the end:

// launch a coroutine to process some kind of incoming request
val request = launch {
 repeat(3) { i -> // launch a few children jobs
 launch {
 delay((i + 1) * 200L) // variable delay 200ms, 400ms, 600ms
 println("Coroutine $i is done")
 }
 }
 println("request: I'm done and I don't explicitly join my children that are still
active")
}
request.join() // wait for completion of the request, including all its children
println("Now processing of the request is complete")

You can get full code here.

The result is going to be:

Parental responsibilities

449

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-06.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/join.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-07.kt

request: I'm done and I don't explicitly join my children that are still active
Coroutine 0 is done
Coroutine 1 is done
Coroutine 2 is done
Now processing of the request is complete

Automatically assigned ids are good when coroutines log often and you just need to correlate log
records coming from the same coroutine. However, when a coroutine is tied to the processing of
a speci c request or doing some speci c background task, it is better to name it explicitly for
debugging purposes. The CoroutineName context element serves the same purpose as the
thread name. It is included in the thread name that is executing this coroutine when the
debugging mode is turned on.

The following example demonstrates this concept:

log("Started main coroutine")
// run two background value computations
val v1 = async(CoroutineName("v1coroutine")) {
 delay(500)
 log("Computing v1")
 252
}
val v2 = async(CoroutineName("v2coroutine")) {
 delay(1000)
 log("Computing v2")
 6
}
log("The answer for v1 / v2 = ${v1.await() / v2.await()}")

You can get full code here.

The output it produces with -Dkotlinx.coroutines.debug JVM option is similar to:

[main @main#1] Started main coroutine
[main @v1coroutine#2] Computing v1
[main @v2coroutine#3] Computing v2
[main @main#1] The answer for v1 / v2 = 42

Sometimes we need to de ne multiple elements for a coroutine context. We can use the +

operator for that. For example, we can launch a coroutine with an explicitly speci ed dispatcher
and an explicitly speci ed name at the same time:

launch(Dispatchers.Default + CoroutineName("test")) {
 println("I'm working in thread ${Thread.currentThread().name}")
}

Naming coroutines for debugging

Combining context elements

450

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-name/index.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-08.kt

You can get full code here.

The output of this code with the -Dkotlinx.coroutines.debug JVM option is:

I'm working in thread DefaultDispatcher-worker-1 @test#2

Let us put our knowledge about contexts, children and jobs together. Assume that our
application has an object with a lifecycle, but that object is not a coroutine. For example, we are
writing an Android application and launch various coroutines in the context of an Android activity
to perform asynchronous operations to fetch and update data, do animations, etc. All of these
coroutines must be cancelled when the activity is destroyed to avoid memory leaks. We, of
course, can manipulate contexts and jobs manually to tie the lifecycles of the activity and its
coroutines, but kotlinx.coroutines provides an abstraction encapsulating that:

CoroutineScope. You should be already familiar with the coroutine scope as all coroutine
builders are declared as extensions on it.

We manage the lifecycles of our coroutines by creating an instance of CoroutineScope tied to the
lifecycle of our activity. A CoroutineScope instance can be created by the CoroutineScope() or

MainScope() factory functions. The former creates a general-purpose scope, while the latter
creates a scope for UI applications and uses Dispatchers.Main as the default dispatcher:

class Activity {
 private val mainScope = MainScope()

 fun destroy() {
 mainScope.cancel()
 }
 // to be continued ...

Alternatively, we can implement the CoroutineScope interface in this Activity class. The best

way to do it is to use delegation with default factory functions. We also can combine the desired
dispatcher (we used Dispatchers.Default in this example) with the scope:

 class Activity : CoroutineScope by CoroutineScope(Dispatchers.Default) {
 // to be continued ...

Now, we can launch coroutines in the scope of this Activity without having to explicitly specify

their context. For the demo, we launch ten coroutines that delay for a di erent time:

Coroutine scope

451

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-09.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-main-scope.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-main.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html

 // class Activity continues
 fun doSomething() {
 // launch ten coroutines for a demo, each working for a different time
 repeat(10) { i ->
 launch {
 delay((i + 1) * 200L) // variable delay 200ms, 400ms, ... etc
 println("Coroutine $i is done")
 }
 }
 }
} // class Activity ends

In our main function we create the activity, call our test doSomething function, and destroy the

activity after 500ms. This cancels all the coroutines that were launched from doSomething . We

can see that because after the destruction of the activity no more messages are printed, even if
we wait a little longer.

val activity = Activity()
activity.doSomething() // run test function
println("Launched coroutines")
delay(500L) // delay for half a second
println("Destroying activity!")
activity.destroy() // cancels all coroutines
delay(1000) // visually confirm that they don't work

You can get full code here.

The output of this example is:

Launched coroutines
Coroutine 0 is done
Coroutine 1 is done
Destroying activity!

As you can see, only the rst two coroutines print a message and the others are cancelled by a
single invocation of job.cancel() in Activity.destroy() .

Sometimes it is convenient to have an ability to pass some thread-local data to or between
coroutines. However, since they are not bound to any particular thread, this will likely lead to
boilerplate if done manually.

For ThreadLocal, the asContextElement extension function is here for the rescue. It creates an

additional context element which keeps the value of the given ThreadLocal and restores it

every time the coroutine switches its context.

It is easy to demonstrate it in action:

Thread-local data

452

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-10.kt
https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadLocal.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/java.lang.-thread-local/as-context-element.html

threadLocal.set("main")
println("Pre-main, current thread: ${Thread.currentThread()}, thread local value:
'${threadLocal.get()}'")
val job = launch(Dispatchers.Default + threadLocal.asContextElement(value = "launch")) {
 println("Launch start, current thread: ${Thread.currentThread()}, thread local value:
'${threadLocal.get()}'")
 yield()
 println("After yield, current thread: ${Thread.currentThread()}, thread local value:
'${threadLocal.get()}'")
}
job.join()
println("Post-main, current thread: ${Thread.currentThread()}, thread local value:
'${threadLocal.get()}'")

You can get full code here.

In this example we launch a new coroutine in a background thread pool using
Dispatchers.Default, so it works on a di erent thread from the thread pool, but it still has the
value of the thread local variable that we speci ed using
threadLocal.asContextElement(value = "launch") , no matter on what thread the

coroutine is executed. Thus, the output (with debug) is:

Pre-main, current thread: Thread[main @coroutine#1,5,main], thread local value: 'main'
Launch start, current thread: Thread[DefaultDispatcher-worker-1 @coroutine#2,5,main],
thread local value: 'launch'
After yield, current thread: Thread[DefaultDispatcher-worker-2 @coroutine#2,5,main],
thread local value: 'launch'
Post-main, current thread: Thread[main @coroutine#1,5,main], thread local value: 'main'

It's easy to forget to set the corresponding context element. The thread-local variable accessed
from the coroutine may then have an unexpected value, if the thread running the coroutine is
di erent. To avoid such situations, it is recommended to use the ensurePresent method and fail-
fast on improper usages.

ThreadLocal has rst-class support and can be used with any primitive

kotlinx.coroutines provides. It has one key limitation, though: when a thread-local is

mutated, a new value is not propagated to the coroutine caller (because a context element
cannot track all ThreadLocal object accesses), and the updated value is lost on the next

suspension. Use withContext to update the value of the thread-local in a coroutine, see
asContextElement for more details.

Alternatively, a value can be stored in a mutable box like class Counter(var i: Int) ,

which is, in turn, stored in a thread-local variable. However, in this case you are fully responsible
to synchronize potentially concurrent modi cations to the variable in this mutable box.

For advanced usage, for example for integration with logging MDC, transactional contexts or any
other libraries which internally use thread-locals for passing data, see documentation of the
ThreadContextElement interface that should be implemented.

453

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-11.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/java.lang.-thread-local/ensure-present.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-context.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/java.lang.-thread-local/as-context-element.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-thread-context-element/index.html

Table of contents

Asynchronous Flow

Representing multiple values

Sequences

Suspending functions

Flows

Flows are cold

Flow cancellation

Flow builders

Intermediate ow operators

Transform operator

Size-limiting operators

Terminal ow operators

Flows are sequential

Flow context

Wrong emission withContext

owOn operator

Bu ering

Con ation

Processing the latest value

Composing multiple ows

Zip

Combine

Flattening ows

atMapConcat

atMapMerge

atMapLatest

Flow exceptions

Collector try and catch

Everything is caught

Exception transparency

Transparent catch

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

454

Catching declaratively

Flow completion

Imperative nally block

Declarative handling

Upstream exceptions only

Imperative versus declarative

Launching ow

Suspending functions asynchronously returns a single value, but how can we return multiple
asynchronously computed values? This is where Kotlin Flows come in.

Multiple values can be represented in Kotlin using collections. For example, we can have a
function foo() that returns a List of three numbers and then print them all using forEach:

fun foo(): List<Int> = listOf(1, 2, 3)

fun main() {
 foo().forEach { value -> println(value) }
}

You can get the full code from here.

This code outputs:

1
2
3

If we are computing the numbers with some CPU-consuming blocking code (each computation
taking 100ms), then we can represent the numbers using a Sequence:

fun foo(): Sequence<Int> = sequence { // sequence builder
 for (i in 1..3) {
 Thread.sleep(100) // pretend we are computing it
 yield(i) // yield next value
 }
}

fun main() {
 foo().forEach { value -> println(value) }
}

—

—

—

—

—

—

—

Asynchronous Flow

Representing multiple values

Sequences

455

https://kotlinlang.org/docs/reference/collections-overview.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/for-each.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-01.kt
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/index.html

You can get the full code from here.

This code outputs the same numbers, but it waits 100ms before printing each one.

However, this computation blocks the main thread that is running the code. When these values
are computed by asynchronous code we can mark the function foo with a suspend modi er,

so that it can perform its work without blocking and return the result as a list:

suspend fun foo(): List<Int> {
 delay(1000) // pretend we are doing something asynchronous here
 return listOf(1, 2, 3)
}

fun main() = runBlocking<Unit> {
 foo().forEach { value -> println(value) }
}

You can get the full code from here.

This code prints the numbers after waiting for a second.

Using the List<Int> result type, means we can only return all the values at once. To represent

the stream of values that are being asynchronously computed, we can use a Flow<Int> type just

like we would the Sequence<Int> type for synchronously computed values:

foo(): Flow<Int> = flow { // flow builder
for (i in 1..3) {
 delay(100) // pretend we are doing something useful here
 emit(i) // emit next value
}

main() = runBlocking<Unit> {
// Launch a concurrent coroutine to check if the main thread is blocked
launch {
 for (k in 1..3) {
 println("I'm not blocked $k")
 delay(100)
 }
}
// Collect the flow
foo().collect { value -> println(value) }

You can get the full code from here.

Suspending functions

Flows

456

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-02.kt
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-03.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-04.kt

This code waits 100ms before printing each number without blocking the main thread. This is
veri ed by printing "I'm not blocked" every 100ms from a separate coroutine that is running in
the main thread:

I'm not blocked 1
1
I'm not blocked 2
2
I'm not blocked 3
3

Notice the following di erences in the code with the Flow from the earlier examples:

A builder function for Flow type is called ow.

Code inside the flow { ... } builder block can suspend.

The function foo() is no longer marked with suspend modi er.

Values are emitted from the ow using emit function.

Values are collected from the ow using collect function.

We can replace delay with Thread.sleep in the body of foo's flow { ... } and see that

the main thread is blocked in this case.

Flows are cold streams similar to sequences — the code inside a ow builder does not run until
the ow is collected. This becomes clear in the following example:

foo(): Flow<Int> = flow {
println("Flow started")
for (i in 1..3) {
 delay(100)
 emit(i)
}

main() = runBlocking<Unit> {
println("Calling foo...")
val flow = foo()
println("Calling collect...")
flow.collect { value -> println(value) }
println("Calling collect again...")
flow.collect { value -> println(value) }

You can get the full code from here.

Which prints:

—

—

—

—

—

Flows are cold

457

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-flow-collector/emit.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/collect.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/delay.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-05.kt

Calling foo...
Calling collect...
Flow started
1
2
3
Calling collect again...
Flow started
1
2
3

This is a key reason the foo() function (which returns a ow) is not marked with suspend

modi er. By itself, foo() returns quickly and does not wait for anything. The ow starts every

time it is collected, that is why we see "Flow started" when we call collect again.

Flow adheres to the general cooperative cancellation of coroutines. However, ow infrastructure
does not introduce additional cancellation points. It is fully transparent for cancellation. As usual,

ow collection can be cancelled when the ow is suspended in a cancellable suspending function
(like delay), and cannot be cancelled otherwise.

The following example shows how the ow gets cancelled on a timeout when running in a
withTimeoutOrNull block and stops executing its code:

foo(): Flow<Int> = flow {
for (i in 1..3) {
 delay(100)
 println("Emitting $i")
 emit(i)
}

main() = runBlocking<Unit> {
withTimeoutOrNull(250) { // Timeout after 250ms
 foo().collect { value -> println(value) }
}
println("Done")

You can get the full code from here.

Notice how only two numbers get emitted by the ow in foo() function, producing the

following output:

Flow cancellation

458

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/delay.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-timeout-or-null.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-06.kt

Emitting 1
1
Emitting 2
2
Done

The flow { ... } builder from the previous examples is the most basic one. There are other

builders for easier declaration of ows:

owOf builder that de nes a ow emitting a xed set of values.

Various collections and sequences can be converted to ows using .asFlow() extension

functions.

So, the example that prints the numbers from 1 to 3 from a ow can be written as:

// Convert an integer range to a flow
(1..3).asFlow().collect { value -> println(value) }

You can get the full code from here.

Flows can be transformed with operators, just as you would with collections and sequences.
Intermediate operators are applied to an upstream ow and return a downstream ow. These
operators are cold, just like ows are. A call to such an operator is not a suspending function
itself. It works quickly, returning the de nition of a new transformed ow.

The basic operators have familiar names like map and lter. The important di erence to
sequences is that blocks of code inside these operators can call suspending functions.

For example, a ow of incoming requests can be mapped to the results with the map operator,
even when performing a request is a long-running operation that is implemented by a
suspending function:

end fun performRequest(request: Int): String {
delay(1000) // imitate long-running asynchronous work
return "response $request"

main() = runBlocking<Unit> {
(1..3).asFlow() // a flow of requests
 .map { request -> performRequest(request) }
 .collect { response -> println(response) }

You can get the full code from here.

Flow builders

—

—

Intermediate ow operators

459

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow-of.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-07.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/map.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/filter.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/map.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-08.kt

It produces the following three lines, each line appearing after each second:

response 1
response 2
response 3

Among the ow transformation operators, the most general one is called transform. It can be
used to imitate simple transformations like map and lter, as well as implement more complex
transformations. Using the transform operator, we can emit arbitrary values an arbitrary

number of times.

For example, using transform we can emit a string before performing a long-running

asynchronous request and follow it with a response:

(1..3).asFlow() // a flow of requests
 .transform { request ->
 emit("Making request $request")
 emit(performRequest(request))
 }
 .collect { response -> println(response) }

You can get the full code from here.

The output of this code is:

Making request 1
response 1
Making request 2
response 2
Making request 3
response 3

Size-limiting intermediate operators like take cancel the execution of the ow when the
corresponding limit is reached. Cancellation in coroutines is always performed by throwing an
exception, so that all the resource-management functions (like try { ... } finally { ...

} blocks) operate normally in case of cancellation:

Transform operator

Size-limiting operators

460

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/transform.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/map.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/filter.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-flow-collector/emit.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-09.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/take.html

fun numbers(): Flow<Int> = flow {
 try {
 emit(1)
 emit(2)
 println("This line will not execute")
 emit(3)
 } finally {
 println("Finally in numbers")
 }
}

fun main() = runBlocking<Unit> {
 numbers()
 .take(2) // take only the first two
 .collect { value -> println(value) }
}

You can get the full code from here.

The output of this code clearly shows that the execution of the flow { ... } body in the

numbers() function stopped after emitting the second number:

1
2
Finally in numbers

Terminal operators on ows are suspending functions that start a collection of the ow. The collect
operator is the most basic one, but there are other terminal operators, which can make it easier:

Conversion to various collections like toList and toSet.

Operators to get the rst value and to ensure that a ow emits a single value.

Reducing a ow to a value with reduce and fold.

For example:

val sum = (1..5).asFlow()
 .map { it * it } // squares of numbers from 1 to 5
 .reduce { a, b -> a + b } // sum them (terminal operator)
println(sum)

You can get the full code from here.

Prints a single number:

55

Terminal ow operators

—

—

—

Flows are sequential

461

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-10.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/collect.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/to-list.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/to-set.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/first.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/single.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/reduce.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/fold.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-11.kt

Each individual collection of a ow is performed sequentially unless special operators that
operate on multiple ows are used. The collection works directly in the coroutine that calls a
terminal operator. No new coroutines are launched by default. Each emitted value is processed
by all the intermediate operators from upstream to downstream and is then delivered to the
terminal operator after.

See the following example that lters the even integers and maps them to strings:

(1..5).asFlow()
 .filter {
 println("Filter $it")
 it % 2 == 0
 }
 .map {
 println("Map $it")
 "string $it"
 }.collect {
 println("Collect $it")
 }

You can get the full code from here.

Producing:

Filter 1
Filter 2
Map 2
Collect string 2
Filter 3
Filter 4
Map 4
Collect string 4
Filter 5

Collection of a ow always happens in the context of the calling coroutine. For example, if there
is a foo ow, then the following code runs in the context speci ed by the author of this code,

regardless of the implementation details of the foo ow:

withContext(context) {
 foo.collect { value ->
 println(value) // run in the specified context
 }
}

This property of a ow is called context preservation.

Flow context

462

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-12.kt

So, by default, code in the flow { ... } builder runs in the context that is provided by a

collector of the corresponding ow. For example, consider the implementation of foo that

prints the thread it is called on and emits three numbers:

fun foo(): Flow<Int> = flow {
 log("Started foo flow")
 for (i in 1..3) {
 emit(i)
 }
}

fun main() = runBlocking<Unit> {
 foo().collect { value -> log("Collected $value") }
}

You can get the full code from here.

Running this code produces:

[main @coroutine#1] Started foo flow
[main @coroutine#1] Collected 1
[main @coroutine#1] Collected 2
[main @coroutine#1] Collected 3

Since foo().collect is called from the main thread, the body of foo 's ow is also called in

the main thread. This is the perfect default for fast-running or asynchronous code that does not
care about the execution context and does not block the caller.

However, the long-running CPU-consuming code might need to be executed in the context of
Dispatchers.Default and UI-updating code might need to be executed in the context of
Dispatchers.Main. Usually, withContext is used to change the context in the code using Kotlin
coroutines, but code in the flow { ... } builder has to honor the context preservation

property and is not allowed to emit from a di erent context.

Try running the following code:

fun foo(): Flow<Int> = flow {
 // The WRONG way to change context for CPU-consuming code in flow builder
 kotlinx.coroutines.withContext(Dispatchers.Default) {
 for (i in 1..3) {
 Thread.sleep(100) // pretend we are computing it in CPU-consuming way
 emit(i) // emit next value
 }
 }
}

fun main() = runBlocking<Unit> {
 foo().collect { value -> println(value) }
}

Wrong emission withContext

463

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-13.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-main.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-context.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-flow-collector/emit.html

You can get the full code from here.

This code produces the following exception:

Note that we had to use a fully quali ed name of the kotlinx.coroutines.withContext function
in this example to demonstrate this exception. A short name of withContext would have

resolved to a special stub function that produces a compilation error to prevent us from
running into this problem.

The exception refers to the owOn function that shall be used to change the context of the ow
emission. The correct way to change the context of a ow is shown in the example below, which
also prints the names of the corresponding threads to show how it all works:

fun foo(): Flow<Int> = flow {
 for (i in 1..3) {
 Thread.sleep(100) // pretend we are computing it in CPU-consuming way
 log("Emitting $i")
 emit(i) // emit next value
 }
}.flowOn(Dispatchers.Default) // RIGHT way to change context for CPU-consuming code in
flow builder

fun main() = runBlocking<Unit> {
 foo().collect { value ->
 log("Collected $value")
 }
}

You can get the full code from here.

Notice how flow { ... } works in the background thread, while collection happens in the

main thread:

Another thing to observe here is that the owOn operator has changed the default sequential
nature of the ow. Now collection happens in one coroutine ("coroutine#1") and emission
happens in another coroutine ("coroutine#2") that is running in another thread concurrently with
the collecting coroutine. The owOn operator creates another coroutine for an upstream ow
when it has to change the CoroutineDispatcher in its context.

Running di erent parts of a ow in di erent coroutines can be helpful from the standpoint of the
overall time it takes to collect the ow, especially when long-running asynchronous operations
are involved. For example, consider a case when the emission by foo() ow is slow, taking 100

ms to produce an element; and collector is also slow, taking 300 ms to process an element. Let's
see how long it takes to collect such a ow with three numbers:

owOn operator

Bu ering

464

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-14.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-context.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow-on.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-15.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow-on.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow-on.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-dispatcher/index.html

fun foo(): Flow<Int> = flow {
 for (i in 1..3) {
 delay(100) // pretend we are asynchronously waiting 100 ms
 emit(i) // emit next value
 }
}

fun main() = runBlocking<Unit> {
 val time = measureTimeMillis {
 foo().collect { value ->
 delay(300) // pretend we are processing it for 300 ms
 println(value)
 }
 }
 println("Collected in $time ms")
}

You can get the full code from here.

It produces something like this, with the whole collection taking around 1200 ms (three numbers,
400 ms for each):

1
2
3
Collected in 1220 ms

We can use a bu er operator on a ow to run emitting code of foo() concurrently with

collecting code, as opposed to running them sequentially:

val time = measureTimeMillis {
 foo()
 .buffer() // buffer emissions, don't wait
 .collect { value ->
 delay(300) // pretend we are processing it for 300 ms
 println(value)
 }
}
println("Collected in $time ms")

You can get the full code from here.

It produces the same numbers just faster, as we have e ectively created a processing pipeline,
having to only wait 100 ms for the rst number and then spending only 300 ms to process each
number. This way it takes around 1000 ms to run:

1
2
3
Collected in 1071 ms

465

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-16.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/buffer.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-17.kt

Note that the owOn operator uses the same bu ering mechanism when it has to change a
CoroutineDispatcher, but here we explicitly request bu ering without changing the
execution context.

When a ow represents partial results of the operation or operation status updates, it may not be
necessary to process each value, but instead, only most recent ones. In this case, the con ate
operator can be used to skip intermediate values when a collector is too slow to process them.
Building on the previous example:

val time = measureTimeMillis {
 foo()
 .conflate() // conflate emissions, don't process each one
 .collect { value ->
 delay(300) // pretend we are processing it for 300 ms
 println(value)
 }
}
println("Collected in $time ms")

You can get the full code from here.

We see that while the rst number was still being processed the second, and third were already
produced, so the second one was con ated and only the most recent (the third one) was
delivered to the collector:

1
3
Collected in 758 ms

Con ation is one way to speed up processing when both the emitter and collector are slow. It
does it by dropping emitted values. The other way is to cancel a slow collector and restart it every
time a new value is emitted. There is a family of xxxLatest operators that perform the same

essential logic of a xxx operator, but cancel the code in their block on a new value. Let's try

changing con ate to collectLatest in the previous example:

val time = measureTimeMillis {
 foo()
 .collectLatest { value -> // cancel & restart on the latest value
 println("Collecting $value")
 delay(300) // pretend we are processing it for 300 ms
 println("Done $value")
 }
}
println("Collected in $time ms")

Con ation

Processing the latest value

466

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow-on.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-dispatcher/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/conflate.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-18.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/conflate.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/collect-latest.html

You can get the full code from here.

Since the body of collectLatest takes 300 ms, but new values are emitted every 100 ms, we see
that the block is run on every value, but completes only for the last value:

Collecting 1
Collecting 2
Collecting 3
Done 3
Collected in 741 ms

There are lots of ways to compose multiple ows.

Just like the Sequence.zip extension function in the Kotlin standard library, ows have a zip
operator that combines the corresponding values of two ows:

val nums = (1..3).asFlow() // numbers 1..3
val strs = flowOf("one", "two", "three") // strings
nums.zip(strs) { a, b -> "$a -> $b" } // compose a single string
 .collect { println(it) } // collect and print

You can get the full code from here.

This example prints:

1 -> one
2 -> two
3 -> three

When ow represents the most recent value of a variable or operation (see also the related
section on con ation), it might be needed to perform a computation that depends on the most
recent values of the corresponding ows and to recompute it whenever any of the upstream

ows emit a value. The corresponding family of operators is called combine.

For example, if the numbers in the previous example update every 300ms, but strings update
every 400 ms, then zipping them using the zip operator will still produce the same result, albeit
results that are printed every 400 ms:

We use a onEach intermediate operator in this example to delay each element and make the
code that emits sample ows more declarative and shorter.

Composing multiple ows

Zip

Combine

467

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-19.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/collect-latest.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/zip.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/zip.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-20.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/combine.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/zip.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/on-each.html

val nums = (1..3).asFlow().onEach { delay(300) } // numbers 1..3 every 300 ms
val strs = flowOf("one", "two", "three").onEach { delay(400) } // strings every 400 ms
val startTime = System.currentTimeMillis() // remember the start time
nums.zip(strs) { a, b -> "$a -> $b" } // compose a single string with "zip"
 .collect { value -> // collect and print
 println("$value at ${System.currentTimeMillis() - startTime} ms from start")
 }

You can get the full code from here.

However, when using a combine operator here instead of a zip:

val nums = (1..3).asFlow().onEach { delay(300) } // numbers 1..3 every 300 ms
val strs = flowOf("one", "two", "three").onEach { delay(400) } // strings every 400 ms
val startTime = System.currentTimeMillis() // remember the start time
nums.combine(strs) { a, b -> "$a -> $b" } // compose a single string with "combine"
 .collect { value -> // collect and print
 println("$value at ${System.currentTimeMillis() - startTime} ms from start")
 }

You can get the full code from here.

We get quite a di erent output, where a line is printed at each emission from either nums or

strs ows:

1 -> one at 452 ms from start
2 -> one at 651 ms from start
2 -> two at 854 ms from start
3 -> two at 952 ms from start
3 -> three at 1256 ms from start

Flows represent asynchronously received sequences of values, so it is quite easy to get in a
situation where each value triggers a request for another sequence of values. For example, we
can have the following function that returns a ow of two strings 500 ms apart:

fun requestFlow(i: Int): Flow<String> = flow {
 emit("$i: First")
 delay(500) // wait 500 ms
 emit("$i: Second")
}

Now if we have a ow of three integers and call requestFlow for each of them like this:

(1..3).asFlow().map { requestFlow(it) }

Flattening ows

468

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-21.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/combine.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/zip.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-22.kt

Then we end up with a ow of ows (Flow<Flow<String>>) that needs to be attened into a

single ow for further processing. Collections and sequences have atten and atMap operators
for this. However, due the asynchronous nature of ows they call for di erent modes of

attening, as such, there is a family of attening operators on ows.

Concatenating mode is implemented by atMapConcat and attenConcat operators. They are the
most direct analogues of the corresponding sequence operators. They wait for the inner ow to
complete before starting to collect the next one as the following example shows:

val startTime = System.currentTimeMillis() // remember the start time
(1..3).asFlow().onEach { delay(100) } // a number every 100 ms
 .flatMapConcat { requestFlow(it) }
 .collect { value -> // collect and print
 println("$value at ${System.currentTimeMillis() - startTime} ms from start")
 }

You can get the full code from here.

The sequential nature of atMapConcat is clearly seen in the output:

1: First at 121 ms from start
1: Second at 622 ms from start
2: First at 727 ms from start
2: Second at 1227 ms from start
3: First at 1328 ms from start
3: Second at 1829 ms from start

Another attening mode is to concurrently collect all the incoming ows and merge their values
into a single ow so that values are emitted as soon as possible. It is implemented by

atMapMerge and attenMerge operators. They both accept an optional concurrency

parameter that limits the number of concurrent ows that are collected at the same time (it is
equal to DEFAULT_CONCURRENCY by default).

val startTime = System.currentTimeMillis() // remember the start time
(1..3).asFlow().onEach { delay(100) } // a number every 100 ms
 .flatMapMerge { requestFlow(it) }
 .collect { value -> // collect and print
 println("$value at ${System.currentTimeMillis() - startTime} ms from start")
 }

You can get the full code from here.

The concurrent nature of atMapMerge is obvious:

atMapConcat

atMapMerge

469

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/flatten.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/flat-map.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flat-map-concat.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flatten-concat.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-23.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flat-map-concat.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flat-map-merge.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flatten-merge.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-d-e-f-a-u-l-t_-c-o-n-c-u-r-r-e-n-c-y.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-24.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flat-map-merge.html

1: First at 136 ms from start
2: First at 231 ms from start
3: First at 333 ms from start
1: Second at 639 ms from start
2: Second at 732 ms from start
3: Second at 833 ms from start

Note that the atMapMerge calls its block of code ({ requestFlow(it) } in this example)

sequentially, but collects the resulting ows concurrently, it is the equivalent of performing a
sequential map { requestFlow(it) } rst and then calling attenMerge on the result.

In a similar way to the collectLatest operator, that was shown in "Processing the latest value"
section, there is the corresponding "Latest" attening mode where a collection of the previous

ow is cancelled as soon as new ow is emitted. It is implemented by the atMapLatest operator.

val startTime = System.currentTimeMillis() // remember the start time
(1..3).asFlow().onEach { delay(100) } // a number every 100 ms
 .flatMapLatest { requestFlow(it) }
 .collect { value -> // collect and print
 println("$value at ${System.currentTimeMillis() - startTime} ms from start")
 }

You can get the full code from here.

The output here in this example is a good demonstration of how atMapLatest works:

1: First at 142 ms from start
2: First at 322 ms from start
3: First at 425 ms from start
3: Second at 931 ms from start

Note that atMapLatest cancels all the code in its block ({ requestFlow(it) } in this

example) on a new value. It makes no di erence in this particular example, because the call
to requestFlow itself is fast, not-suspending, and cannot be cancelled. However, it would

show up if we were to use suspending functions like delay in there.

Flow collection can complete with an exception when an emitter or code inside the operators
throw an exception. There are several ways to handle these exceptions.

A collector can use Kotlin's try/catch block to handle exceptions:

atMapLatest

Flow exceptions

Collector try and catch

470

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flat-map-merge.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flatten-merge.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/collect-latest.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flat-map-latest.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-25.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flat-map-latest.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flat-map-latest.html
https://kotlinlang.org/docs/reference/exceptions.html

fun foo(): Flow<Int> = flow {
 for (i in 1..3) {
 println("Emitting $i")
 emit(i) // emit next value
 }
}

fun main() = runBlocking<Unit> {
 try {
 foo().collect { value ->
 println(value)
 check(value <= 1) { "Collected $value" }
 }
 } catch (e: Throwable) {
 println("Caught $e")
 }
}

You can get the full code from here.

This code successfully catches an exception in collect terminal operator and, as we see, no more
values are emitted after that:

Emitting 1
1
Emitting 2
2
Caught java.lang.IllegalStateException: Collected 2

The previous example actually catches any exception happening in the emitter or in any
intermediate or terminal operators. For example, let's change the code so that emitted values are
mapped to strings, but the corresponding code produces an exception:

fun foo(): Flow<String> =
 flow {
 for (i in 1..3) {
 println("Emitting $i")
 emit(i) // emit next value
 }
 }
 .map { value ->
 check(value <= 1) { "Crashed on $value" }
 "string $value"
 }

fun main() = runBlocking<Unit> {
 try {
 foo().collect { value -> println(value) }
 } catch (e: Throwable) {
 println("Caught $e")
 }
}

Everything is caught

471

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-26.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/collect.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/map.html

You can get the full code from here.

This exception is still caught and collection is stopped:

Emitting 1
string 1
Emitting 2
Caught java.lang.IllegalStateException: Crashed on 2

But how can code of the emitter encapsulate its exception handling behavior?

Flows must be transparent to exceptions and it is a violation of the exception transparency to emit
values in the flow { ... } builder from inside of a try/catch block. This guarantees that a

collector throwing an exception can always catch it using try/catch as in the previous

example.

The emitter can use a catch operator that preserves this exception transparency and allows
encapsulation of its exception handling. The body of the catch operator can analyze an

exception and react to it in di erent ways depending on which exception was caught:

Exceptions can be rethrown using throw .

Exceptions can be turned into emission of values using emit from the body of catch.

Exceptions can be ignored, logged, or processed by some other code.

For example, let us emit the text on catching an exception:

foo()
 .catch { e -> emit("Caught $e") } // emit on exception
 .collect { value -> println(value) }

You can get the full code from here.

The output of the example is the same, even though we do not have try/catch around the

code anymore.

The catch intermediate operator, honoring exception transparency, catches only upstream
exceptions (that is an exception from all the operators above catch , but not below it). If the

block in collect { ... } (placed below catch) throws an exception then it escapes:

Exception transparency

—
—

—

Transparent catch

472

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-27.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-flow-collector/emit.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/catch.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-flow-collector/emit.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/catch.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-28.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/catch.html

fun foo(): Flow<Int> = flow {
 for (i in 1..3) {
 println("Emitting $i")
 emit(i)
 }
}

fun main() = runBlocking<Unit> {
 foo()
 .catch { e -> println("Caught $e") } // does not catch downstream exceptions
 .collect { value ->
 check(value <= 1) { "Collected $value" }
 println(value)
 }
}

You can get the full code from here.

A "Caught …" message is not printed despite there being a catch operator:

We can combine the declarative nature of the catch operator with a desire to handle all the
exceptions, by moving the body of the collect operator into onEach and putting it before the
catch operator. Collection of this ow must be triggered by a call to collect() without

parameters:

foo()
 .onEach { value ->
 check(value <= 1) { "Collected $value" }
 println(value)
 }
 .catch { e -> println("Caught $e") }
 .collect()

You can get the full code from here.

Now we can see that a "Caught …" message is printed and so we can catch all the exceptions
without explicitly using a try/catch block:

When ow collection completes (normally or exceptionally) it may need to execute an action. As
you may have already noticed, it can be done in two ways: imperative or declarative.

In addition to try / catch , a collector can also use a finally block to execute an action upon

collect completion.

Catching declaratively

Flow completion

Imperative nally block

473

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-29.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/catch.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/collect.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/on-each.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-30.kt

fun foo(): Flow<Int> = (1..3).asFlow()

fun main() = runBlocking<Unit> {
 try {
 foo().collect { value -> println(value) }
 } finally {
 println("Done")
 }
}

You can get the full code from here.

This code prints three numbers produced by the foo() ow followed by a "Done" string:

1
2
3
Done

For the declarative approach, ow has onCompletion intermediate operator that is invoked when
the ow has completely collected.

The previous example can be rewritten using an onCompletion operator and produces the same
output:

foo()
 .onCompletion { println("Done") }
 .collect { value -> println(value) }

You can get the full code from here.

The key advantage of onCompletion is a nullable Throwable parameter of the lambda that can

be used to determine whether the ow collection was completed normally or exceptionally. In
the following example the foo() ow throws an exception after emitting the number 1:

fun foo(): Flow<Int> = flow {
 emit(1)
 throw RuntimeException()
}

fun main() = runBlocking<Unit> {
 foo()
 .onCompletion { cause -> if (cause != null) println("Flow completed
exceptionally") }
 .catch { cause -> println("Caught exception") }
 .collect { value -> println(value) }
}

You can get the full code from here.

Declarative handling

474

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-31.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/on-completion.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/on-completion.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-32.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/on-completion.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-33.kt

As you may expect, it prints:

1
Flow completed exceptionally
Caught exception

The onCompletion operator, unlike catch, does not handle the exception. As we can see from the
above example code, the exception still ows downstream. It will be delivered to further
onCompletion operators and can be handled with a catch operator.

Just like the catch operator, onCompletion only sees exceptions coming from upstream and does
not see downstream exceptions. For example, run the following code:

fun foo(): Flow<Int> = (1..3).asFlow()

fun main() = runBlocking<Unit> {
 foo()
 .onCompletion { cause -> println("Flow completed with $cause") }
 .collect { value ->
 check(value <= 1) { "Collected $value" }
 println(value)
 }
}

You can get the full code from here.

We can see the completion cause is null, yet collection failed with exception:

1
Flow completed with null
Exception in thread "main" java.lang.IllegalStateException: Collected 2

Now we know how to collect ow, and handle its completion and exceptions in both imperative
and declarative ways. The natural question here is, which approach is preferred and why? As a
library, we do not advocate for any particular approach and believe that both options are valid
and should be selected according to your own preferences and code style.

It is easy to use ows to represent asynchronous events that are coming from some source. In
this case, we need an analogue of the addEventListener function that registers a piece of

code with a reaction for incoming events and continues further work. The onEach operator can
serve this role. However, onEach is an intermediate operator. We also need a terminal operator

to collect the ow. Otherwise, just calling onEach has no e ect.

Upstream exceptions only

Imperative versus declarative

Launching ow

475

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/on-completion.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/catch.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/catch.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/on-completion.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-34.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/on-each.html

If we use the collect terminal operator after onEach , then the code after it will wait until the

ow is collected:

// Imitate a flow of events
fun events(): Flow<Int> = (1..3).asFlow().onEach { delay(100) }

fun main() = runBlocking<Unit> {
 events()
 .onEach { event -> println("Event: $event") }
 .collect() // <--- Collecting the flow waits
 println("Done")
}

You can get the full code from here.

As you can see, it prints:

Event: 1
Event: 2
Event: 3
Done

The launchIn terminal operator comes in handy here. By replacing collect with launchIn we

can launch a collection of the ow in a separate coroutine, so that execution of further code
immediately continues:

fun main() = runBlocking<Unit> {
 events()
 .onEach { event -> println("Event: $event") }
 .launchIn(this) // <--- Launching the flow in a separate coroutine
 println("Done")
}

You can get the full code from here.

It prints:

Done
Event: 1
Event: 2
Event: 3

The required parameter to launchIn must specify a CoroutineScope in which the coroutine to

collect the ow is launched. In the above example this scope comes from the runBlocking
coroutine builder, so while the ow is running, this runBlocking scope waits for completion of its
child coroutine and keeps the main function from returning and terminating this example.

476

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/collect.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-35.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/launch-in.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-36.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html

In actual applications a scope will come from an entity with a limited lifetime. As soon as the
lifetime of this entity is terminated the corresponding scope is cancelled, cancelling the collection
of the corresponding ow. This way the pair of onEach { ... }.launchIn(scope) works

like the addEventListener . However, there is no need for the corresponding

removeEventListener function, as cancellation and structured concurrency serve this

purpose.

Note that launchIn also returns a Job, which can be used to cancel the corresponding ow
collection coroutine only without cancelling the whole scope or to join it.

477

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/launch-in.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/cancel.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/join.html

Table of contents

Channels

Channel basics

Closing and iteration over channels

Building channel producers

Pipelines

Prime numbers with pipeline

Fan-out

Fan-in

Bu ered channels

Channels are fair

Ticker channels

Deferred values provide a convenient way to transfer a single value between coroutines.
Channels provide a way to transfer a stream of values.

A Channel is conceptually very similar to BlockingQueue . One key di erence is that instead of

a blocking put operation it has a suspending send, and instead of a blocking take operation it

has a suspending receive.

val channel = Channel<Int>()
launch {
 // this might be heavy CPU-consuming computation or async logic, we'll just send five
squares
 for (x in 1..5) channel.send(x * x)
}
// here we print five received integers:
repeat(5) { println(channel.receive()) }
println("Done!")

You can get full code here.

The output of this code is:

1
4
9
16
25
Done!

—

—

—

—

—

—

—

—

—

—

—

Channels

Channel basics

478

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-channel/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-send-channel/send.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-receive-channel/receive.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-01.kt

Unlike a queue, a channel can be closed to indicate that no more elements are coming. On the
receiver side it is convenient to use a regular for loop to receive elements from the channel.

Conceptually, a close is like sending a special close token to the channel. The iteration stops as
soon as this close token is received, so there is a guarantee that all previously sent elements
before the close are received:

val channel = Channel<Int>()
launch {
 for (x in 1..5) channel.send(x * x)
 channel.close() // we're done sending
}
// here we print received values using `for` loop (until the channel is closed)
for (y in channel) println(y)
println("Done!")

You can get full code here.

The pattern where a coroutine is producing a sequence of elements is quite common. This is a
part of producer-consumer pattern that is often found in concurrent code. You could abstract such
a producer into a function that takes channel as its parameter, but this goes contrary to common
sense that results must be returned from functions.

There is a convenient coroutine builder named produce that makes it easy to do it right on
producer side, and an extension function consumeEach, that replaces a for loop on the

consumer side:

val squares = produceSquares()
squares.consumeEach { println(it) }
println("Done!")

You can get full code here.

A pipeline is a pattern where one coroutine is producing, possibly in nite, stream of values:

fun CoroutineScope.produceNumbers() = produce<Int> {
 var x = 1
 while (true) send(x++) // infinite stream of integers starting from 1
}

And another coroutine or coroutines are consuming that stream, doing some processing, and
producing some other results. In the example below, the numbers are just squared:

Closing and iteration over channels

Building channel producers

Pipelines

479

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-send-channel/close.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-02.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/produce.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/consume-each.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-03.kt

fun CoroutineScope.square(numbers: ReceiveChannel<Int>): ReceiveChannel<Int> = produce {
 for (x in numbers) send(x * x)
}

The main code starts and connects the whole pipeline:

val numbers = produceNumbers() // produces integers from 1 and on
val squares = square(numbers) // squares integers
for (i in 1..5) println(squares.receive()) // print first five
println("Done!") // we are done
coroutineContext.cancelChildren() // cancel children coroutines

You can get full code here.

All functions that create coroutines are de ned as extensions on CoroutineScope, so that we
can rely on structured concurrency to make sure that we don't have lingering global
coroutines in our application.

Let's take pipelines to the extreme with an example that generates prime numbers using a
pipeline of coroutines. We start with an in nite sequence of numbers.

fun CoroutineScope.numbersFrom(start: Int) = produce<Int> {
 var x = start
 while (true) send(x++) // infinite stream of integers from start
}

The following pipeline stage lters an incoming stream of numbers, removing all the numbers
that are divisible by the given prime number:

fun CoroutineScope.filter(numbers: ReceiveChannel<Int>, prime: Int) = produce<Int> {
 for (x in numbers) if (x % prime != 0) send(x)
}

Now we build our pipeline by starting a stream of numbers from 2, taking a prime number from
the current channel, and launching new pipeline stage for each prime number found:

numbersFrom(2) -> filter(2) -> filter(3) -> filter(5) -> filter(7) ...

The following example prints the rst ten prime numbers, running the whole pipeline in the
context of the main thread. Since all the coroutines are launched in the scope of the main
runBlocking coroutine we don't have to keep an explicit list of all the coroutines we have started.
We use cancelChildren extension function to cancel all the children coroutines after we have
printed the rst ten prime numbers.

Prime numbers with pipeline

480

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-04.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlinlang.org/docs/reference/coroutines/composing-suspending-functions.html#structured-concurrency-with-async
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/kotlin.coroutines.-coroutine-context/cancel-children.html

var cur = numbersFrom(2)
for (i in 1..10) {
 val prime = cur.receive()
 println(prime)
 cur = filter(cur, prime)
}
coroutineContext.cancelChildren() // cancel all children to let main finish

You can get full code here.

The output of this code is:

2
3
5
7
11
13
17
19
23
29

Note that you can build the same pipeline using iterator coroutine builder from the standard

library. Replace produce with iterator , send with yield , receive with next ,

ReceiveChannel with Iterator , and get rid of the coroutine scope. You will not need

runBlocking either. However, the bene t of a pipeline that uses channels as shown above is

that it can actually use multiple CPU cores if you run it in Dispatchers.Default context.

Anyway, this is an extremely impractical way to nd prime numbers. In practice, pipelines do
involve some other suspending invocations (like asynchronous calls to remote services) and
these pipelines cannot be built using sequence / iterator , because they do not allow

arbitrary suspension, unlike produce , which is fully asynchronous.

Multiple coroutines may receive from the same channel, distributing work between themselves.
Let us start with a producer coroutine that is periodically producing integers (ten numbers per
second):

fun CoroutineScope.produceNumbers() = produce<Int> {
 var x = 1 // start from 1
 while (true) {
 send(x++) // produce next
 delay(100) // wait 0.1s
 }
}

Then we can have several processor coroutines. In this example, they just print their id and
received number:

Fan-out

481

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-05.kt
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/iterator.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html

fun CoroutineScope.launchProcessor(id: Int, channel: ReceiveChannel<Int>) = launch {
 for (msg in channel) {
 println("Processor #$id received $msg")
 }
}

Now let us launch ve processors and let them work for almost a second. See what happens:

val producer = produceNumbers()
repeat(5) { launchProcessor(it, producer) }
delay(950)
producer.cancel() // cancel producer coroutine and thus kill them all

You can get full code here.

The output will be similar to the the following one, albeit the processor ids that receive each
speci c integer may be di erent:

Processor #2 received 1
Processor #4 received 2
Processor #0 received 3
Processor #1 received 4
Processor #3 received 5
Processor #2 received 6
Processor #4 received 7
Processor #0 received 8
Processor #1 received 9
Processor #3 received 10

Note that cancelling a producer coroutine closes its channel, thus eventually terminating iteration
over the channel that processor coroutines are doing.

Also, pay attention to how we explicitly iterate over channel with for loop to perform fan-out in

launchProcessor code. Unlike consumeEach , this for loop pattern is perfectly safe to use

from multiple coroutines. If one of the processor coroutines fails, then others would still be
processing the channel, while a processor that is written via consumeEach always consumes

(cancels) the underlying channel on its normal or abnormal completion.

Multiple coroutines may send to the same channel. For example, let us have a channel of strings,
and a suspending function that repeatedly sends a speci ed string to this channel with a speci ed
delay:

suspend fun sendString(channel: SendChannel<String>, s: String, time: Long) {
 while (true) {
 delay(time)
 channel.send(s)
 }
}

Fan-in

482

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-06.kt

Now, let us see what happens if we launch a couple of coroutines sending strings (in this example
we launch them in the context of the main thread as main coroutine's children):

val channel = Channel<String>()
launch { sendString(channel, "foo", 200L) }
launch { sendString(channel, "BAR!", 500L) }
repeat(6) { // receive first six
 println(channel.receive())
}
coroutineContext.cancelChildren() // cancel all children to let main finish

You can get full code here.

The output is:

foo
foo
BAR!
foo
foo
BAR!

The channels shown so far had no bu er. Unbu ered channels transfer elements when sender
and receiver meet each other (aka rendezvous). If send is invoked rst, then it is suspended until
receive is invoked, if receive is invoked rst, it is suspended until send is invoked.

Both Channel() factory function and produce builder take an optional capacity parameter to

specify bu er size. Bu er allows senders to send multiple elements before suspending, similar to
the BlockingQueue with a speci ed capacity, which blocks when bu er is full.

Take a look at the behavior of the following code:

val channel = Channel<Int>(4) // create buffered channel
val sender = launch { // launch sender coroutine
 repeat(10) {
 println("Sending $it") // print before sending each element
 channel.send(it) // will suspend when buffer is full
 }
}
// don't receive anything... just wait....
delay(1000)
sender.cancel() // cancel sender coroutine

You can get full code here.

It prints "sending" ve times using a bu ered channel with capacity of four:

Bu ered channels

483

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-07.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-channel.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/produce.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-08.kt

Sending 0
Sending 1
Sending 2
Sending 3
Sending 4

The rst four elements are added to the bu er and the sender suspends when trying to send the
fth one.

Send and receive operations to channels are fair with respect to the order of their invocation
from multiple coroutines. They are served in rst-in rst-out order, e.g. the rst coroutine to
invoke receive gets the element. In the following example two coroutines "ping" and "pong"

are receiving the "ball" object from the shared "table" channel.

data class Ball(var hits: Int)

fun main() = runBlocking {
 val table = Channel<Ball>() // a shared table
 launch { player("ping", table) }
 launch { player("pong", table) }
 table.send(Ball(0)) // serve the ball
 delay(1000) // delay 1 second
 coroutineContext.cancelChildren() // game over, cancel them
}

suspend fun player(name: String, table: Channel<Ball>) {
 for (ball in table) { // receive the ball in a loop
 ball.hits++
 println("$name $ball")
 delay(300) // wait a bit
 table.send(ball) // send the ball back
 }
}

You can get full code here.

The "ping" coroutine is started rst, so it is the rst one to receive the ball. Even though "ping"
coroutine immediately starts receiving the ball again after sending it back to the table, the ball
gets received by the "pong" coroutine, because it was already waiting for it:

ping Ball(hits=1)
pong Ball(hits=2)
ping Ball(hits=3)
pong Ball(hits=4)

Note that sometimes channels may produce executions that look unfair due to the nature of the
executor that is being used. See this issue for details.

Channels are fair

Ticker channels

484

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-09.kt
https://github.com/Kotlin/kotlinx.coroutines/issues/111

Ticker channel is a special rendezvous channel that produces Unit every time given delay

passes since last consumption from this channel. Though it may seem to be useless standalone, it
is a useful building block to create complex time-based produce pipelines and operators that do
windowing and other time-dependent processing. Ticker channel can be used in select to
perform "on tick" action.

To create such channel use a factory method ticker. To indicate that no further elements are
needed use ReceiveChannel.cancel method on it.

Now let's see how it works in practice:

import kotlinx.coroutines.*
import kotlinx.coroutines.channels.*

fun main() = runBlocking<Unit> {
 val tickerChannel = ticker(delayMillis = 100, initialDelayMillis = 0) // create
ticker channel
 var nextElement = withTimeoutOrNull(1) { tickerChannel.receive() }
 println("Initial element is available immediately: $nextElement") // initial delay
hasn't passed yet

 nextElement = withTimeoutOrNull(50) { tickerChannel.receive() } // all subsequent
elements has 100ms delay
 println("Next element is not ready in 50 ms: $nextElement")

 nextElement = withTimeoutOrNull(60) { tickerChannel.receive() }
 println("Next element is ready in 100 ms: $nextElement")

 // Emulate large consumption delays
 println("Consumer pauses for 150ms")
 delay(150)
 // Next element is available immediately
 nextElement = withTimeoutOrNull(1) { tickerChannel.receive() }
 println("Next element is available immediately after large consumer delay:
$nextElement")
 // Note that the pause between `receive` calls is taken into account and next element
arrives faster

485

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/produce.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.selects/select.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/ticker.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-receive-channel/cancel.html

 nextElement = withTimeoutOrNull(60) { tickerChannel.receive() }
 println("Next element is ready in 50ms after consumer pause in 150ms: $nextElement")

 tickerChannel.cancel() // indicate that no more elements are needed
}

You can get full code here.

It prints following lines:

Initial element is available immediately: kotlin.Unit
Next element is not ready in 50 ms: null
Next element is ready in 100 ms: kotlin.Unit
Consumer pauses for 150ms
Next element is available immediately after large consumer delay: kotlin.Unit
Next element is ready in 50ms after consumer pause in 150ms: kotlin.Unit

Note that ticker is aware of possible consumer pauses and, by default, adjusts next produced
element delay if a pause occurs, trying to maintain a xed rate of produced elements.

Optionally, a mode parameter equal to TickerMode.FIXED_DELAY can be speci ed to maintain a

xed delay between elements.

486

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-10.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/ticker.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-ticker-mode/-f-i-x-e-d_-d-e-l-a-y.html

Table of contents

Exception Handling

Exception propagation

CoroutineExceptionHandler

Cancellation and exceptions

Exceptions aggregation

Supervision

Supervision job

Supervision scope

Exceptions in supervised coroutines

This section covers exception handling and cancellation on exceptions. We already know that
cancelled coroutine throws CancellationException in suspension points and that it is ignored by
coroutines machinery. But what happens if an exception is thrown during cancellation or
multiple children of the same coroutine throw an exception?

Coroutine builders come in two avors: propagating exceptions automatically (launch and actor)
or exposing them to users (async and produce). The former treat exceptions as unhandled,
similar to Java's Thread.uncaughtExceptionHandler , while the latter are relying on the user

to consume the nal exception, for example via await or receive (produce and receive are
covered later in Channels section).

It can be demonstrated by a simple example that creates coroutines in the GlobalScope:

—

—

—

—

—

—

—

—

—

Exception Handling

Exception propagation

487

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-cancellation-exception/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/actor.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/produce.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/await.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-receive-channel/receive.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/produce.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-receive-channel/receive.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/docs/channels.md
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-global-scope/index.html

import kotlinx.coroutines.*

fun main() = runBlocking {
 val job = GlobalScope.launch {
 println("Throwing exception from launch")
 throw IndexOutOfBoundsException() // Will be printed to the console by
Thread.defaultUncaughtExceptionHandler
 }
 job.join()
 println("Joined failed job")
 val deferred = GlobalScope.async {
 println("Throwing exception from async")
 throw ArithmeticException() // Nothing is printed, relying on user to call await
 }
 try {
 deferred.await()
 println("Unreached")
 } catch (e: ArithmeticException) {
 println("Caught ArithmeticException")
 }
}

You can get full code here.

The output of this code is (with debug):

Throwing exception from launch
Exception in thread "DefaultDispatcher-worker-2 @coroutine#2"
java.lang.IndexOutOfBoundsException
Joined failed job
Throwing exception from async
Caught ArithmeticException

But what if one does not want to print all exceptions to the console? CoroutineExceptionHandler
context element is used as generic catch block of coroutine where custom logging or exception

handling may take place. It is similar to using Thread.uncaughtExceptionHandler.

On JVM it is possible to rede ne global exception handler for all coroutines by registering
CoroutineExceptionHandler via ServiceLoader. Global exception handler is similar to

Thread.defaultUncaughtExceptionHandler which is used when no more speci c handlers

are registered. On Android, uncaughtExceptionPreHandler is installed as a global coroutine

exception handler.

CoroutineExceptionHandler is invoked only on exceptions which are not expected to be handled
by the user, so registering it in async builder and the like of it has no e ect.

CoroutineExceptionHandler

488

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-exceptions-01.kt
https://github.com/Kotlin/kotlinx.coroutines/blob/master/docs/coroutine-context-and-dispatchers.md#debugging-coroutines-and-threads
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-exception-handler/index.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#setUncaughtExceptionHandler(java.lang.Thread.UncaughtExceptionHandler)
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-exception-handler/index.html
https://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#setDefaultUncaughtExceptionHandler(java.lang.Thread.UncaughtExceptionHandler)
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-exception-handler/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html

val handler = CoroutineExceptionHandler { _, exception ->
 println("Caught $exception")
}
val job = GlobalScope.launch(handler) {
 throw AssertionError()
}
val deferred = GlobalScope.async(handler) {
 throw ArithmeticException() // Nothing will be printed, relying on user to call
deferred.await()
}
joinAll(job, deferred)

You can get full code here.

The output of this code is:

Caught java.lang.AssertionError

Cancellation is tightly bound with exceptions. Coroutines internally use
CancellationException for cancellation, these exceptions are ignored by all handlers, so

they should be used only as the source of additional debug information, which can be obtained
by catch block. When a coroutine is cancelled using Job.cancel without a cause, it terminates,

but it does not cancel its parent. Cancelling without cause is a mechanism for parent to cancel its
children without cancelling itself.

val job = launch {
 val child = launch {
 try {
 delay(Long.MAX_VALUE)
 } finally {
 println("Child is cancelled")
 }
 }
 yield()
 println("Cancelling child")
 child.cancel()
 child.join()
 yield()
 println("Parent is not cancelled")
}
job.join()

You can get full code here.

The output of this code is:

Cancelling child
Child is cancelled
Parent is not cancelled

Cancellation and exceptions

489

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-exceptions-02.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/cancel.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-exceptions-03.kt

If a coroutine encounters exception other than CancellationException , it cancels its parent

with that exception. This behaviour cannot be overridden and is used to provide stable
coroutines hierarchies for structured concurrency which do not depend on
CoroutineExceptionHandler implementation. The original exception is handled by the parent
when all its children terminate.

This also a reason why, in these examples, CoroutineExceptionHandler is always installed to
a coroutine that is created in GlobalScope. It does not make sense to install an exception
handler to a coroutine that is launched in the scope of the main runBlocking, since the main
coroutine is going to be always cancelled when its child completes with exception despite the
installed handler.

val handler = CoroutineExceptionHandler { _, exception ->
 println("Caught $exception")
}
val job = GlobalScope.launch(handler) {
 launch { // the first child
 try {
 delay(Long.MAX_VALUE)
 } finally {
 withContext(NonCancellable) {
 println("Children are cancelled, but exception is not handled until all
children terminate")
 delay(100)
 println("The first child finished its non cancellable block")
 }
 }
 }
 launch { // the second child
 delay(10)
 println("Second child throws an exception")
 throw ArithmeticException()
 }
}
job.join()

You can get full code here.

The output of this code is:

Second child throws an exception
Children are cancelled, but exception is not handled until all children terminate
The first child finished its non cancellable block
Caught java.lang.ArithmeticException

Exceptions aggregation

490

https://github.com/Kotlin/kotlinx.coroutines/blob/master/docs/composing-suspending-functions.md#structured-concurrency-with-async
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-exception-handler/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-exception-handler/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-global-scope/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-exceptions-04.kt

What happens if multiple children of a coroutine throw an exception? The general rule is "the
rst exception wins", so the rst thrown exception is exposed to the handler. But that may cause

lost exceptions, for example if coroutine throws an exception in its finally block. So,

additional exceptions are suppressed.

One of the solutions would have been to report each exception separately, but then
Deferred.await should have had the same mechanism to avoid behavioural inconsistency
and this would cause implementation details of a coroutines (whether it had delegated parts
of its work to its children or not) to leak to its exception handler.

import kotlinx.coroutines.*
import java.io.*

fun main() = runBlocking {
 val handler = CoroutineExceptionHandler { _, exception ->
 println("Caught $exception with suppressed
${exception.suppressed.contentToString()}")
 }
 val job = GlobalScope.launch(handler) {
 launch {
 try {
 delay(Long.MAX_VALUE)
 } finally {
 throw ArithmeticException()
 }
 }
 launch {
 delay(100)
 throw IOException()
 }
 delay(Long.MAX_VALUE)
 }
 job.join()
}

You can get full code here.

Note: This above code will work properly only on JDK7+ that supports suppressed

exceptions

The output of this code is:

Caught java.io.IOException with suppressed [java.lang.ArithmeticException]

Note, this mechanism currently works only on Java version 1.7+. Limitation on JS and Native
is temporary and will be xed in the future.

Cancellation exceptions are transparent and unwrapped by default:

491

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/await.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-exceptions-05.kt

val handler = CoroutineExceptionHandler { _, exception ->
 println("Caught original $exception")
}
val job = GlobalScope.launch(handler) {
 val inner = launch {
 launch {
 launch {
 throw IOException()
 }
 }
 }
 try {
 inner.join()
 } catch (e: CancellationException) {
 println("Rethrowing CancellationException with original cause")
 throw e
 }
}
job.join()

You can get full code here.

The output of this code is:

Rethrowing CancellationException with original cause
Caught original java.io.IOException

As we have studied before, cancellation is a bidirectional relationship propagating through the
whole coroutines hierarchy. But what if unidirectional cancellation is required?

A good example of such a requirement is a UI component with the job de ned in its scope. If any
of the UI's child tasks have failed, it is not always necessary to cancel (e ectively kill) the whole UI
component, but if UI component is destroyed (and its job is cancelled), then it is necessary to fail
all child jobs as their results are no longer required.

Another example is a server process that spawns several children jobs and needs to supervise
their execution, tracking their failures and restarting just those children jobs that had failed.

For these purposes SupervisorJob can be used. It is similar to a regular Job with the only
exception that cancellation is propagated only downwards. It is easy to demonstrate with an
example:

import kotlinx.coroutines.*

fun main() = runBlocking {
 val supervisor = SupervisorJob()
 with(CoroutineScope(coroutineContext + supervisor)) {
 // launch the first child -- its exception is ignored for this example (don't do
this in practice!)

Supervision

Supervision job

492

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-exceptions-06.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-supervisor-job.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job.html

 val firstChild = launch(CoroutineExceptionHandler { _, _ -> }) {
 println("First child is failing")
 throw AssertionError("First child is cancelled")
 }
 // launch the second child
 val secondChild = launch {
 firstChild.join()
 // Cancellation of the first child is not propagated to the second child
 println("First child is cancelled: ${firstChild.isCancelled}, but second one
is still active")
 try {
 delay(Long.MAX_VALUE)
 } finally {
 // But cancellation of the supervisor is propagated
 println("Second child is cancelled because supervisor is cancelled")
 }
 }
 // wait until the first child fails & completes
 firstChild.join()
 println("Cancelling supervisor")
 supervisor.cancel()
 secondChild.join()
 }
}

You can get full code here.

The output of this code is:

First child is failing
First child is cancelled: true, but second one is still active
Cancelling supervisor
Second child is cancelled because supervisor is cancelled

For scoped concurrency supervisorScope can be used instead of coroutineScope for the same
purpose. It propagates cancellation only in one direction and cancels all children only if it has
failed itself. It also waits for all children before completion just like coroutineScope does.

Supervision scope

493

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-supervision-01.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/supervisor-scope.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html

import kotlin.coroutines.*
import kotlinx.coroutines.*

fun main() = runBlocking {
 try {
 supervisorScope {
 val child = launch {
 try {
 println("Child is sleeping")
 delay(Long.MAX_VALUE)
 } finally {
 println("Child is cancelled")
 }
 }
 // Give our child a chance to execute and print using yield
 yield()
 println("Throwing exception from scope")
 throw AssertionError()
 }
 } catch(e: AssertionError) {
 println("Caught assertion error")
 }
}

You can get full code here.

The output of this code is:

Child is sleeping
Throwing exception from scope
Child is cancelled
Caught assertion error

Another crucial di erence between regular and supervisor jobs is exception handling. Every child
should handle its exceptions by itself via exception handling mechanisms. This di erence comes
from the fact that child's failure is not propagated to the parent.

import kotlin.coroutines.*
import kotlinx.coroutines.*

fun main() = runBlocking {
 val handler = CoroutineExceptionHandler { _, exception ->
 println("Caught $exception")
 }
 supervisorScope {
 val child = launch(handler) {
 println("Child throws an exception")
 throw AssertionError()
 }
 println("Scope is completing")
 }
 println("Scope is completed")
}

Exceptions in supervised coroutines

494

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-supervision-02.kt

You can get full code here.

The output of this code is:

Scope is completing
Child throws an exception
Caught java.lang.AssertionError
Scope is completed

495

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-supervision-03.kt

Table of contents

Shared mutable state and concurrency

The problem

Volatiles are of no help

Thread-safe data structures

Thread con nement ne-grained

Thread con nement coarse-grained

Mutual exclusion

Actors

Coroutines can be executed concurrently using a multi-threaded dispatcher like the
Dispatchers.Default. It presents all the usual concurrency problems. The main problem being
synchronization of access to shared mutable state. Some solutions to this problem in the land
of coroutines are similar to the solutions in the multi-threaded world, but others are unique.

Let us launch a hundred coroutines all doing the same action thousand times. We'll also measure
their completion time for further comparisons:

suspend fun massiveRun(action: suspend () -> Unit) {
 val n = 100 // number of coroutines to launch
 val k = 1000 // times an action is repeated by each coroutine
 val time = measureTimeMillis {
 coroutineScope { // scope for coroutines
 repeat(n) {
 launch {
 repeat(k) { action() }
 }
 }
 }
 }
 println("Completed ${n * k} actions in $time ms")
}

We start with a very simple action that increments a shared mutable variable using multi-
threaded Dispatchers.Default.

—

—

—

—

—

—

—

—

Shared mutable state and concurrency

The problem

496

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html

var counter = 0

fun main() = runBlocking {
 withContext(Dispatchers.Default) {
 massiveRun {
 counter++
 }
 }
 println("Counter = $counter")
}

You can get full code here.

What does it print at the end? It is highly unlikely to ever print "Counter = 100000", because a
hundred coroutines increment the counter concurrently from multiple threads without any

synchronization.

There is common misconception that making a variable volatile solves concurrency problem.

Let us try it:

@Volatile // in Kotlin `volatile` is an annotation
var counter = 0

fun main() = runBlocking {
 withContext(Dispatchers.Default) {
 massiveRun {
 counter++
 }
 }
 println("Counter = $counter")
}

You can get full code here.

This code works slower, but we still don't get "Counter = 100000" at the end, because volatile
variables guarantee linearizable (this is a technical term for "atomic") reads and writes to the
corresponding variable, but do not provide atomicity of larger actions (increment in our case).

The general solution that works both for threads and for coroutines is to use a thread-safe (aka
synchronized, linearizable, or atomic) data structure that provides all the necessarily
synchronization for the corresponding operations that needs to be performed on a shared state.
In the case of a simple counter we can use AtomicInteger class which has atomic

incrementAndGet operations:

Volatiles are of no help

Thread-safe data structures

497

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-sync-01.kt
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-sync-02.kt

var counter = AtomicInteger()

fun main() = runBlocking {
 withContext(Dispatchers.Default) {
 massiveRun {
 counter.incrementAndGet()
 }
 }
 println("Counter = $counter")
}

You can get full code here.

This is the fastest solution for this particular problem. It works for plain counters, collections,
queues and other standard data structures and basic operations on them. However, it does not
easily scale to complex state or to complex operations that do not have ready-to-use thread-safe
implementations.

Thread con nement is an approach to the problem of shared mutable state where all access to the
particular shared state is con ned to a single thread. It is typically used in UI applications, where
all UI state is con ned to the single event-dispatch/application thread. It is easy to apply with
coroutines by using a
single-threaded context.

val counterContext = newSingleThreadContext("CounterContext")
var counter = 0

fun main() = runBlocking {
 withContext(Dispatchers.Default) {
 massiveRun {
 // confine each increment to a single-threaded context
 withContext(counterContext) {
 counter++
 }
 }
 }
 println("Counter = $counter")
}

You can get full code here.

This code works very slowly, because it does ne-grained thread-con nement. Each individual
increment switches from multi-threaded Dispatchers.Default context to the single-threaded
context using withContext(counterContext) block.

Thread con nement ne-grained

Thread con nement coarse-grained

498

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-sync-03.kt
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-sync-04.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-context.html

In practice, thread con nement is performed in large chunks, e.g. big pieces of state-updating
business logic are con ned to the single thread. The following example does it like that, running
each coroutine in the single-threaded context to start with.

val counterContext = newSingleThreadContext("CounterContext")
var counter = 0

fun main() = runBlocking {
 // confine everything to a single-threaded context
 withContext(counterContext) {
 massiveRun {
 counter++
 }
 }
 println("Counter = $counter")
}

You can get full code here.

This now works much faster and produces correct result.

Mutual exclusion solution to the problem is to protect all modi cations of the shared state with a
critical section that is never executed concurrently. In a blocking world you'd typically use
synchronized or ReentrantLock for that. Coroutine's alternative is called Mutex. It has lock

and unlock functions to delimit a critical section. The key di erence is that Mutex.lock() is a

suspending function. It does not block a thread.

There is also withLock extension function that conveniently represents mutex.lock(); try {

... } finally { mutex.unlock() } pattern:

val mutex = Mutex()
var counter = 0

fun main() = runBlocking {
 withContext(Dispatchers.Default) {
 massiveRun {
 // protect each increment with lock
 mutex.withLock {
 counter++
 }
 }
 }
 println("Counter = $counter")
}

You can get full code here.

Mutual exclusion

499

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-sync-05.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.sync/-mutex/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.sync/-mutex/lock.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.sync/-mutex/unlock.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.sync/with-lock.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-sync-06.kt

The locking in this example is ne-grained, so it pays the price. However, it is a good choice for
some situations where you absolutely must modify some shared state periodically, but there is
no natural thread that this state is con ned to.

An actor is an entity made up of a combination of a coroutine, the state that is con ned and
encapsulated into this coroutine, and a channel to communicate with other coroutines. A simple
actor can be written as a function, but an actor with a complex state is better suited for a class.

There is an actor coroutine builder that conveniently combines actor's mailbox channel into its
scope to receive messages from and combines the send channel into the resulting job object, so
that a single reference to the actor can be carried around as its handle.

The rst step of using an actor is to de ne a class of messages that an actor is going to process.
Kotlin's sealed classes are well suited for that purpose. We de ne CounterMsg sealed class with

IncCounter message to increment a counter and GetCounter message to get its value. The

later needs to send a response. A CompletableDeferred communication primitive, that
represents a single value that will be known (communicated) in the future, is used here for that
purpose.

// Message types for counterActor
sealed class CounterMsg
object IncCounter : CounterMsg() // one-way message to increment counter
class GetCounter(val response: CompletableDeferred<Int>) : CounterMsg() // a request with
reply

Then we de ne a function that launches an actor using an actor coroutine builder:

// This function launches a new counter actor
fun CoroutineScope.counterActor() = actor<CounterMsg> {
 var counter = 0 // actor state
 for (msg in channel) { // iterate over incoming messages
 when (msg) {
 is IncCounter -> counter++
 is GetCounter -> msg.response.complete(counter)
 }
 }
}

The main code is straightforward:

Actors

500

https://en.wikipedia.org/wiki/Actor_model
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/actor.html
https://kotlinlang.org/docs/reference/sealed-classes.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-completable-deferred/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/actor.html

fun main() = runBlocking<Unit> {
 val counter = counterActor() // create the actor
 withContext(Dispatchers.Default) {
 massiveRun {
 counter.send(IncCounter)
 }
 }
 // send a message to get a counter value from an actor
 val response = CompletableDeferred<Int>()
 counter.send(GetCounter(response))
 println("Counter = ${response.await()}")
 counter.close() // shutdown the actor
}

You can get full code here.

It does not matter (for correctness) what context the actor itself is executed in. An actor is a
coroutine and a coroutine is executed sequentially, so con nement of the state to the speci c
coroutine works as a solution to the problem of shared mutable state. Indeed, actors may modify
their own private state, but can only a ect each other through messages (avoiding the need for
any locks).

Actor is more e cient than locking under load, because in this case it always has work to do and
it does not have to switch to a di erent context at all.

Note that an actor coroutine builder is a dual of produce coroutine builder. An actor is
associated with the channel that it receives messages from, while a producer is associated
with the channel that it sends elements to.

501

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-sync-07.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/actor.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/produce.html

Table of contents

Select Expression (experimental)

Selecting from channels

Selecting on close

Selecting to send

Selecting deferred values

Switch over a channel of deferred values

Select expression makes it possible to await multiple suspending functions simultaneously and
select the rst one that becomes available.

Select expressions are an experimental feature of kotlinx.coroutines. Their API is

expected to evolve in the upcoming updates of the kotlinx.coroutines library with

potentially breaking changes.

Let us have two producers of strings: fizz and buzz . The fizz produces "Fizz" string every

300 ms:

fun CoroutineScope.fizz() = produce<String> {
 while (true) { // sends "Fizz" every 300 ms
 delay(300)
 send("Fizz")
 }
}

And the buzz produces "Buzz!" string every 500 ms:

fun CoroutineScope.buzz() = produce<String> {
 while (true) { // sends "Buzz!" every 500 ms
 delay(500)
 send("Buzz!")
 }
}

Using receive suspending function we can receive either from one channel or the other. But
select expression allows us to receive from both simultaneously using its onReceive clauses:

—

—

—

—

—

—

Select Expression (experimental)

Selecting from channels

502

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-receive-channel/receive.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.selects/select.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-receive-channel/on-receive.html

suspend fun selectFizzBuzz(fizz: ReceiveChannel<String>, buzz: ReceiveChannel<String>) {
 select<Unit> { // <Unit> means that this select expression does not produce any
result
 fizz.onReceive { value -> // this is the first select clause
 println("fizz -> '$value'")
 }
 buzz.onReceive { value -> // this is the second select clause
 println("buzz -> '$value'")
 }
 }
}

Let us run it all seven times:

val fizz = fizz()
val buzz = buzz()
repeat(7) {
 selectFizzBuzz(fizz, buzz)
}
coroutineContext.cancelChildren() // cancel fizz & buzz coroutines

You can get full code here.

The result of this code is:

fizz -> 'Fizz'
buzz -> 'Buzz!'
fizz -> 'Fizz'
fizz -> 'Fizz'
buzz -> 'Buzz!'
fizz -> 'Fizz'
buzz -> 'Buzz!'

The onReceive clause in select fails when the channel is closed causing the corresponding

select to throw an exception. We can use onReceiveOrNull clause to perform a speci c action

when the channel is closed. The following example also shows that select is an expression that

returns the result of its selected clause:

Selecting on close

503

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-select-01.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-receive-channel/on-receive.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/on-receive-or-null.html

suspend fun selectAorB(a: ReceiveChannel<String>, b: ReceiveChannel<String>): String =
 select<String> {
 a.onReceiveOrNull { value ->
 if (value == null)
 "Channel 'a' is closed"
 else
 "a -> '$value'"
 }
 b.onReceiveOrNull { value ->
 if (value == null)
 "Channel 'b' is closed"
 else
 "b -> '$value'"
 }
 }

Note that onReceiveOrNull is an extension function de ned only for channels with non-nullable
elements so that there is no accidental confusion between a closed channel and a null value.

Let's use it with channel a that produces "Hello" string four times and channel b that produces

"World" four times:

val a = produce<String> {
 repeat(4) { send("Hello $it") }
}
val b = produce<String> {
 repeat(4) { send("World $it") }
}
repeat(8) { // print first eight results
 println(selectAorB(a, b))
}
coroutineContext.cancelChildren()

You can get full code here.

The result of this code is quite interesting, so we'll analyze it in mode detail:

a -> 'Hello 0'
a -> 'Hello 1'
b -> 'World 0'
a -> 'Hello 2'
a -> 'Hello 3'
b -> 'World 1'
Channel 'a' is closed
Channel 'a' is closed

There are couple of observations to make out of it.

First of all, select is biased to the rst clause. When several clauses are selectable at the same

time, the rst one among them gets selected. Here, both channels are constantly producing
strings, so a channel, being the rst clause in select, wins. However, because we are using

unbu ered channel, the a gets suspended from time to time on its send invocation and gives a

chance for b to send, too.

504

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/on-receive-or-null.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-select-02.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-send-channel/send.html

The second observation, is that onReceiveOrNull gets immediately selected when the channel is
already closed.

Select expression has onSend clause that can be used for a great good in combination with a
biased nature of selection.

Let us write an example of producer of integers that sends its values to a side channel when

the consumers on its primary channel cannot keep up with it:

fun CoroutineScope.produceNumbers(side: SendChannel<Int>) = produce<Int> {
 for (num in 1..10) { // produce 10 numbers from 1 to 10
 delay(100) // every 100 ms
 select<Unit> {
 onSend(num) {} // Send to the primary channel
 side.onSend(num) {} // or to the side channel
 }
 }
}

Consumer is going to be quite slow, taking 250 ms to process each number:

val side = Channel<Int>() // allocate side channel
launch { // this is a very fast consumer for the side channel
 side.consumeEach { println("Side channel has $it") }
}
produceNumbers(side).consumeEach {
 println("Consuming $it")
 delay(250) // let us digest the consumed number properly, do not hurry
}
println("Done consuming")
coroutineContext.cancelChildren()

You can get full code here.

So let us see what happens:

Consuming 1
Side channel has 2
Side channel has 3
Consuming 4
Side channel has 5
Side channel has 6
Consuming 7
Side channel has 8
Side channel has 9
Consuming 10
Done consuming

Selecting to send

Selecting deferred values

505

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/on-receive-or-null.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-send-channel/on-send.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-select-03.kt

Deferred values can be selected using onAwait clause. Let us start with an async function that
returns a deferred string value after a random delay:

fun CoroutineScope.asyncString(time: Int) = async {
 delay(time.toLong())
 "Waited for $time ms"
}

Let us start a dozen of them with a random delay.

fun CoroutineScope.asyncStringsList(): List<Deferred<String>> {
 val random = Random(3)
 return List(12) { asyncString(random.nextInt(1000)) }
}

Now the main function awaits for the rst of them to complete and counts the number of
deferred values that are still active. Note that we've used here the fact that select expression

is a Kotlin DSL, so we can provide clauses for it using an arbitrary code. In this case we iterate
over a list of deferred values to provide onAwait clause for each deferred value.

val list = asyncStringsList()
val result = select<String> {
 list.withIndex().forEach { (index, deferred) ->
 deferred.onAwait { answer ->
 "Deferred $index produced answer '$answer'"
 }
 }
}
println(result)
val countActive = list.count { it.isActive }
println("$countActive coroutines are still active")

You can get full code here.

The output is:

Deferred 4 produced answer 'Waited for 128 ms'
11 coroutines are still active

Let us write a channel producer function that consumes a channel of deferred string values, waits
for each received deferred value, but only until the next deferred value comes over or the
channel is closed. This example puts together onReceiveOrNull and onAwait clauses in the same
select :

Switch over a channel of deferred values

506

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/on-await.html
https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-select-04.kt
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/on-receive-or-null.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/on-await.html

fun CoroutineScope.switchMapDeferreds(input: ReceiveChannel<Deferred<String>>) =
produce<String> {
 var current = input.receive() // start with first received deferred value
 while (isActive) { // loop while not cancelled/closed
 val next = select<Deferred<String>?> { // return next deferred value from this
select or null
 input.onReceiveOrNull { update ->
 update // replaces next value to wait
 }
 current.onAwait { value ->
 send(value) // send value that current deferred has produced
 input.receiveOrNull() // and use the next deferred from the input channel
 }
 }
 if (next == null) {
 println("Channel was closed")
 break // out of loop
 } else {
 current = next
 }
 }
}

To test it, we'll use a simple async function that resolves to a speci ed string after a speci ed
time:

fun CoroutineScope.asyncString(str: String, time: Long) = async {
 delay(time)
 str
}

The main function just launches a coroutine to print results of switchMapDeferreds and

sends some test data to it:

val chan = Channel<Deferred<String>>() // the channel for test
launch { // launch printing coroutine
 for (s in switchMapDeferreds(chan))
 println(s) // print each received string
}
chan.send(asyncString("BEGIN", 100))
delay(200) // enough time for "BEGIN" to be produced
chan.send(asyncString("Slow", 500))
delay(100) // not enough time to produce slow
chan.send(asyncString("Replace", 100))
delay(500) // give it time before the last one
chan.send(asyncString("END", 500))
delay(1000) // give it time to process
chan.close() // close the channel ...
delay(500) // and wait some time to let it finish

You can get full code here.

The result of this code:

507

https://github.com/kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-select-05.kt

BEGIN
Replace
END
Channel was closed

508

Tools

The language used to document Kotlin code (the equivalent of Java's JavaDoc) is called KDoc. In
its essence, KDoc combines JavaDoc's syntax for block tags (extended to support Kotlin's speci c
constructs) and Markdown for inline markup.

Kotlin's documentation generation tool is called Dokka. See the Dokka README for usage
instructions.

Dokka has plugins for Gradle, Maven and Ant, so you can integrate documentation generation
into your build process.

Just like with JavaDoc, KDoc comments start with /** and end with */ . Every line of the

comment may begin with an asterisk, which is not considered part of the contents of the
comment.

By convention, the rst paragraph of the documentation text (the block of text until the rst
blank line) is the summary description of the element, and the following text is the detailed
description.

Every block tag begins on a new line and starts with the @ character.

Here's an example of a class documented using KDoc:

Documenting Kotlin Code

Generating the Documentation

KDoc Syntax

509

https://github.com/Kotlin/dokka
https://github.com/Kotlin/dokka/blob/master/README.md

/**
 * A group of *members*.
 *
 * This class has no useful logic; it's just a documentation example.
 *
 * @param T the type of a member in this group.
 * @property name the name of this group.
 * @constructor Creates an empty group.
 */
class Group<T>(val name: String) {
 /**
 * Adds a [member] to this group.
 * @return the new size of the group.
 */
 fun add(member: T): Int { ... }
}

KDoc currently supports the following block tags:

Documents a value parameter of a function or a type parameter of a class, property or function.
To better separate the parameter name from the description, if you prefer, you can enclose the
name of the parameter in brackets. The following two syntaxes are therefore equivalent:

@param name description.
@param[name] description.

Documents the return value of a function.

Documents the primary constructor of a class.

Documents the receiver of an extension function.

Documents the property of a class which has the speci ed name. This tag can be used for
documenting properties declared in the primary constructor, where putting a doc comment
directly before the property de nition would be awkward.

Documents an exception which can be thrown by a method. Since Kotlin does not have checked
exceptions, there is also no expectation that all possible exceptions are documented, but you can
still use this tag when it provides useful information for users of the class.

Block Tags

@param <name>

@return

@constructor

@receiver

@property <name>

@throws <class>, @exception <class>

510

Embeds the body of the function with the speci ed quali ed name into the documentation for
the current element, in order to show an example of how the element could be used.

Adds a link to the speci ed class or method to the See Also block of the documentation.

Speci es the author of the element being documented.

Speci es the version of the software in which the element being documented was introduced.

Excludes the element from the generated documentation. Can be used for elements which are
not part of the o cial API of a module but still have to be visible externally.

KDoc does not support the @deprecated tag. Instead, please use the @Deprecated

annotation.

For inline markup, KDoc uses the regular Markdown syntax, extended to support a shorthand
syntax for linking to other elements in the code.

To link to another element (class, method, property or parameter), simply put its name in square
brackets:

Use the method [foo] for this purpose.

If you want to specify a custom label for the link, use the Markdown reference-style syntax:

Use [this method][foo] for this purpose.

You can also use quali ed names in the links. Note that, unlike JavaDoc, quali ed names always
use the dot character to separate the components, even before a method name:

Use [kotlin.reflect.KClass.properties] to enumerate the properties of the class.

Names in links are resolved using the same rules as if the name was used inside the element
being documented. In particular, this means that if you have imported a name into the current

le, you don't need to fully qualify it when you use it in a KDoc comment.

@sample <identifier>

@see <identifier>

@author

@since

@suppress

Inline Markup

Linking to Elements

511

http://daringfireball.net/projects/markdown/syntax

Note that KDoc does not have any syntax for resolving overloaded members in links. Since the
Kotlin documentation generation tool puts the documentation for all overloads of a function on
the same page, identifying a speci c overloaded function is not required for the link to work.

Documentation for a module as a whole, as well as packages in that module, is provided as a
separate Markdown le, and the paths to that le is passed to Dokka using the -include

command line parameter or the corresponding parameters in Ant, Maven and Gradle plugins.

Inside the le, the documentation for the module as a whole and for individual packages is
introduced by the corresponding rst-level headings. The text of the heading must be "Module
<module name> " for the module, and "Package <package qualified name> " for a package.

Here's an example content of the le:

Module kotlin-demo

The module shows the Dokka syntax usage.

Package org.jetbrains.kotlin.demo

Contains assorted useful stuff.

Level 2 heading

Text after this heading is also part of documentation for `org.jetbrains.kotlin.demo`

Package org.jetbrains.kotlin.demo2

Useful stuff in another package.

Module and Package Documentation

512

Annotation processors (see JSR 269) are supported in Kotlin with the kapt compiler plugin.

In a nutshell, you can use libraries such as Dagger or Data Binding in your Kotlin projects.

Please read below about how to apply the kapt plugin to your Gradle/Maven build.

Apply the kotlin-kapt Gradle plugin:

plugins {
 id "org.jetbrains.kotlin.kapt" version "1.3.50"
}

plugins {
 kotlin("kapt") version "1.3.50"
}

Alternatively, you can use the apply plugin syntax:

apply plugin: 'kotlin-kapt'

Then add the respective dependencies using the kapt con guration in your dependencies

block:

dependencies {
 kapt 'groupId:artifactId:version'
}

dependencies {
 kapt("groupId:artifactId:version")
}

If you previously used the Android support for annotation processors, replace usages of the
annotationProcessor con guration with kapt . If your project contains Java classes, kapt

will also take care of them.

If you use annotation processors for your androidTest or test sources, the respective kapt

con gurations are named kaptAndroidTest and kaptTest . Note that kaptAndroidTest

and kaptTest extends kapt , so you can just provide the kapt dependency and it will be

available both for production sources and tests.

Use arguments {} block to pass arguments to annotation processors:

Annotation Processing with Kotlin

Using in Gradle

Annotation processor arguments

513

https://jcp.org/en/jsr/detail?id=269
https://google.github.io/dagger/
https://developer.android.com/topic/libraries/data-binding/index.html
https://developer.android.com/studio/build/gradle-plugin-3-0-0-migration.html#annotationProcessor_config

kapt {
 arguments {
 arg("key", "value")
 }
}

The kapt annotation processing tasks are cached in Gradle by default. However, annotation
processors run arbitrary code that may not necessarily transform the task inputs into the
outputs, might access and modify the les that are not tracked by Gradle etc. If the annotation
processors used in the build cannot be properly cached, it is possible to disable caching for kapt
entirely by adding the following lines to the build script, in order to avoid false-positive cache hits
for the kapt tasks:

kapt {
 useBuildCache = false
}

To improve the speed of builds that use kapt, you can enable the Gradle worker API for kapt
tasks. Using the worker API lets Gradle run independent annotation processing tasks from a
single project in parallel, which in some cases signi cantly decreases the execution time.
However, running kapt with Gradle worker API enabled can result in increased memory
consumption due to parallel execution.

To use the Gradle worker API for parallel execution of kapt tasks, add this line to your
gradle.properties le:

kapt.use.worker.api=true

To improve the times of incremental builds with kapt, it can use the Gradle compile avoidance.
With compile avoidance enabled, Gradle can skip annotation processing when rebuilding a
project. Particularly, annotation processing is skipped when:

The project's source les are unchanged.

The changes in dependencies are ABI compatible. For example, the only changes are in
method bodies.

However, compile avoidance can't be used for annotation processors discovered in the compile
classpath since any changes in them require running the annotation processing tasks.

To run kapt with compile avoidance:

Add the annotation processor dependencies to the kapt* con gurations manually as

described above.

Gradle build cache support (since 1.2.20)

Running kapt tasks in parallel (since 1.2.60)

Compile avoidance for kapt (since 1.3.20)

—

—

—

514

https://guides.gradle.org/using-build-cache/
https://guides.gradle.org/using-the-worker-api/
https://docs.gradle.org/current/userguide/java_plugin.html#sec:java_compile_avoidance
https://en.wikipedia.org/wiki/Application_binary_interface

Turn o the discovery of annotation processors in the compile classpath by adding this line to
your gradle.properties le:

kapt.include.compile.classpath=false

Starting from version 1.3.30, kapt supports incremental annotation processing as an
experimental feature. Currently, annotation processing can be incremental only if all annotation
processors being used are incremental.

To enable incremental annotation processing, add this line to your gradle.properties le:

kapt.incremental.apt=true

Note that incremental annotation processing requires incremental compilation to be enabled as
well.

Kapt uses Java compiler to run annotation processors.
Here is how you can pass arbitrary options to javac:

kapt {
 javacOptions {
 // Increase the max count of errors from annotation processors.
 // Default is 100.
 option("-Xmaxerrs", 500)
 }
}

Some annotation processors (such as AutoFactory) rely on precise types in declaration

signatures. By default, Kapt replaces every unknown type (including types for the generated
classes) to NonExistentClass , but you can change this behavior. Add the additional ag to the

build.gradle le to enable error type inferring in stubs:

kapt {
 correctErrorTypes = true
}

Add an execution of the kapt goal from kotlin-maven-plugin before compile :

—

Incremental annotation processing (since 1.3.30)

Java compiler options

Non-existent type correction

Using in Maven

515

<execution>
 <id>kapt</id>
 <goals>
 <goal>kapt</goal>
 </goals>
 <configuration>
 <sourceDirs>
 <sourceDir>src/main/kotlin</sourceDir>
 <sourceDir>src/main/java</sourceDir>
 </sourceDirs>
 <annotationProcessorPaths>
 <!-- Specify your annotation processors here. -->
 <annotationProcessorPath>
 <groupId>com.google.dagger</groupId>
 <artifactId>dagger-compiler</artifactId>
 <version>2.9</version>
 </annotationProcessorPath>
 </annotationProcessorPaths>
 </configuration>
</execution>

You can nd a complete sample project showing the use of Kotlin, Maven and Dagger in the
Kotlin examples repository.

Please note that kapt is still not supported for IntelliJ IDEA’s own build system. Launch the build
from the “Maven Projects” toolbar whenever you want to re-run the annotation processing.

Kapt compiler plugin is available in the binary distribution of the Kotlin compiler.

You can attach the plugin by providing the path to its JAR le using the Xplugin kotlinc option:

-Xplugin=$KOTLIN_HOME/lib/kotlin-annotation-processing.jar

Here is a list of the available options:

sources (required): An output path for the generated les.

classes (required): An output path for the generated class les and resources.

stubs (required): An output path for the stub les. In other words, some temporary

directory.

incrementalData : An output path for the binary stubs.

apclasspath (repeatable): A path to the annotation processor JAR. Pass as many

apclasspath options as many JARs you have.

apoptions : A base64-encoded list of the annotation processor options. See AP/javac

options encoding for more information.

javacArguments : A base64-encoded list of the options passed to javac. See AP/javac

options encoding for more information.

processors : A comma-speci ed list of annotation processor quali ed class names. If

Using in CLI

—

—

—

—

—

—

—

—

516

https://github.com/JetBrains/kotlin-examples/tree/master/maven/dagger-maven-example

speci ed, kapt does not try to nd annotation processors in apclasspath .

verbose : Enable verbose output.

aptMode (required)

stubs – only generate stubs needed for annotation processing;

apt – only run annotation processing;

stubsAndApt – generate stubs and run annotation processing.

correctErrorTypes : See below. Disabled by default.

The plugin option format is: -P plugin:<plugin id>:<key>=<value> . Options can be

repeated.

An example:

-P plugin:org.jetbrains.kotlin.kapt3:sources=build/kapt/sources
-P plugin:org.jetbrains.kotlin.kapt3:classes=build/kapt/classes
-P plugin:org.jetbrains.kotlin.kapt3:stubs=build/kapt/stubs

-P plugin:org.jetbrains.kotlin.kapt3:apclasspath=lib/ap.jar
-P plugin:org.jetbrains.kotlin.kapt3:apclasspath=lib/anotherAp.jar

-P plugin:org.jetbrains.kotlin.kapt3:correctErrorTypes=true

Kapt can generate Kotlin sources. Just write the generated Kotlin source les to the directory
speci ed by processingEnv.options["kapt.kotlin.generated"] , and these les will be

compiled together with the main sources.

You can nd the complete sample in the kotlin-examples Github repository.

Note that Kapt does not support multiple rounds for the generated Kotlin les.

apoptions and javacArguments CLI options accept an encoded map of options.

Here is how you can encode options by yourself:

fun encodeList(options: Map<String, String>): String {
 val os = ByteArrayOutputStream()
 val oos = ObjectOutputStream(os)

 oos.writeInt(options.size)
 for ((key, value) in options.entries) {
 oos.writeUTF(key)
 oos.writeUTF(value)
 }

 oos.flush()
 return Base64.getEncoder().encodeToString(os.toByteArray())
}

—

—

—

—

—

—

Generating Kotlin sources

AP/Javac options encoding

517

https://github.com/JetBrains/kotlin-examples/tree/master/gradle/kotlin-code-generation

In order to build a Kotlin project with Gradle, you should set up the kotlin-gradle plugin, apply it
to your project and add kotlin-stdlib dependencies. Those actions may also be performed
automatically in IntelliJ IDEA by invoking Tools | Kotlin | Con gure Kotlin in Project action.

Apply the Kotlin Gradle plugin by using the Gradle plugins DSL. The Kotlin Gradle plugin 1.3.50
works with Gradle 4.1 and later.

plugins {
 id 'org.jetbrains.kotlin.<...>' version '1.3.50'
}

plugins {
 kotlin("<...>") version "1.3.50"
}

The placeholder <...> should be replaced with one of the plugin names that can be found in

further sections.

Alternatively, apply plugin by adding the kotlin-gradle-plugin dependency to the build

script classpath:

buildscript {
 repositories {
 mavenCentral()
 }

 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:1.3.50"
 }
}

plugins {
 id "org.jetbrains.kotlin.<...>" version "1.3.50"
}

buildscript {
 repositories {
 mavenCentral()
 }

 dependencies {
 classpath(kotlin("gradle-plugin", version = "1.3.50"))
 }
}
plugins {
 kotlin("<...>")
}

This is not required when using Kotlin Gradle plugin 1.1.1 and above with the Gradle plugins DSL,
and with Gradle Kotlin DSL.

Using Gradle

Plugin and Versions

518

https://docs.gradle.org/current/userguide/plugins.html#sec:plugins_block
https://docs.gradle.org/current/userguide/plugins.html#sec:plugins_block
https://github.com/gradle/kotlin-dsl

Using the kotlin-multiplatform plugin for building multiplatform projects is described in

Building Multiplatform Projects with Gradle.

To target the JVM, apply the Kotlin JVM plugin. Starting with Kotlin 1.1.1, the plugin can be applied
using the Gradle plugins DSL:

plugins {
 id "org.jetbrains.kotlin.jvm" version "1.3.50"
}

plugins {
 kotlin("jvm") version "1.3.50"
}

The version should be literal in this block, and it cannot be applied from another build script.

Alternatively, you can use the older apply plugin approach:

apply plugin: 'kotlin'

It's not recommended to apply Kotlin plugins with apply in Gradle Kotlin DSL. The details are

provided below.

Kotlin sources can be mixed with Java sources in the same folder, or in di erent folders. The
default convention is using di erent folders:

project
 - src
 - main (root)
 - kotlin
 - java

The corresponding sourceSets property should be updated if not using the default convention:

sourceSets {
 main.kotlin.srcDirs += 'src/main/myKotlin'
 main.java.srcDirs += 'src/main/myJava'
}

sourceSets["main"].java.srcDir("src/main/myJava")
sourceSets["main"].withConvention(KotlinSourceSet::class) {
 kotlin.srcDir("src/main/myKotlin")
}

With Gradle Kotlin DSL, con gure source sets with java.sourceSets { ... } instead.

When targeting JavaScript, a di erent plugin should be applied:

Building Kotlin Multiplatform Projects

Targeting the JVM

Targeting JavaScript

519

https://docs.gradle.org/current/userguide/plugins.html#sec:plugins_block

plugins {
 id 'org.jetbrains.kotlin.js' version '1.3.50'
}

plugins {
 kotlin("js") version "1.3.50"
}

This plugin only works for Kotlin les so it is recommended to keep Kotlin and Java les separate
(in case if the same project contains Java les). As with targeting the JVM, if not using the default
convention, you should specify the source folder using sourceSets:

sourceSets {
 main.kotlin.srcDirs += 'src/main/myKotlin'
}

sourceSets["main"].withConvention(KotlinSourceSet::class) {
 kotlin.srcDir("src/main/myKotlin")
}

In addition to the output JavaScript le, the plugin by default creates an additional JS le with
binary descriptors. This le is required if you're building a reusable library that other Kotlin
modules can depend on, and should be distributed together with the result of translation. The
generation is controlled by the kotlinOptions.metaInfo option:

compileKotlin2Js {
 kotlinOptions.metaInfo = true
}

tasks {
 "compileKotlin2Js"(Kotlin2JsCompile::class) {
 kotlinOptions.metaInfo = true
 }
}

Android's Gradle model is a little di erent from ordinary Gradle, so if we want to build an
Android project written in Kotlin, we need kotlin-android plugin instead of kotlin:

Targeting Android

520

buildscript {
 ext.kotlin_version = '1.3.50'

 ...

 dependencies {
 classpath 'com.android.tools.build:gradle:3.2.1'
 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"
 }
}

plugins {
 id 'com.android.application'
 id 'kotlin-android'
}

buildscript {
 dependencies {
 classpath("com.android.tools.build:gradle:3.2.1")
 classpath(kotlin("gradle-plugin", version = "1.3.50"))
 }
}
plugins {
 id("com.android.application")
 id("kotlin-android")
}

Kotlin Gradle plugin 1.3.50 works with Android Gradle Plugin 3.0 and later.

Don't forget to con gure the standard library dependency.

If using Android Studio, the following needs to be added under android:

android {
 ...

 sourceSets {
 main.java.srcDirs += 'src/main/kotlin'
 }
}

android {
 ...

 sourceSets["main"].java.srcDir("src/main/kotlin")
}

This lets Android Studio know that the kotlin directory is a source root, so when the project
model is loaded into the IDE it will be properly recognized. Alternatively, you can put Kotlin
classes in the Java source directory, typically located in src/main/java .

Android Studio

Con guring Dependencies

521

In addition to the kotlin-gradle-plugin dependency shown above, you need to add a

dependency on the Kotlin standard library:

repositories {
 mavenCentral()
}

dependencies {
 implementation "org.jetbrains.kotlin:kotlin-stdlib"
}

repositories {
 mavenCentral()
}

dependencies {
 implementation(kotlin("stdlib"))
}

The Kotlin standard library kotlin-stdlib targets Java 6 and above. There are extended

versions of the standard library that add support for some of the features of JDK 7 and JDK 8. To
use these versions, add one of the following dependencies instead of kotlin-stdlib :

implementation "org.jetbrains.kotlin:kotlin-stdlib-jdk7"
implementation "org.jetbrains.kotlin:kotlin-stdlib-jdk8"

implementation(kotlin("stdlib-jdk7"))
implementation(kotlin("stdlib-jdk8"))

In Kotlin 1.1.x, use kotlin-stdlib-jre7 and kotlin-stdlib-jre8 instead.

If you target JavaScript, use the stdlib-js dependency.

implementation "org.jetbrains.kotlin:kotlin-stdlib-js"

implementation(kotlin("stdlib-js"))

If your project uses Kotlin re ection or testing facilities, you need to add the corresponding
dependencies as well:

implementation "org.jetbrains.kotlin:kotlin-reflect"
testImplementation "org.jetbrains.kotlin:kotlin-test"
testImplementation "org.jetbrains.kotlin:kotlin-test-junit"

implementation(kotlin("reflect"))
testImplementation(kotlin("test"))
testImplementation(kotlin("test-junit"))

Starting with Kotlin 1.1.2, the dependencies with group org.jetbrains.kotlin are by default

resolved with the version taken from the applied plugin. You can provide the version manually
using the full dependency notation:

522

implementation "org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version"

 implementation(kotlin("stdlib", kotlinVersion))

Kotlin supports annonation processing via the Kotlin annotation processing tool(kapt). Usage of

kapt with Gradle is described on the kapt page.

The Kotlin Gradle plugin supports incremental compilation. Incremental compilation tracks
changes of source les between builds so only les a ected by these changes would be
compiled.

Incremental compilation is supported for Kotlin/JVM and Kotlin/JS projects. It's enabled by default
since Kotlin 1.1.1 for Kotlin/JVM and 1.3.20 for Kotlin/JS.

There are several ways to override the default setting:

In Gradle con guration les: add the line kotlin.incremental=<value> for Kotlin/JVM or

kotlin.incremental.js=<value> for Kotlin/JS projects either to gradle.properties

or to local.properties le. <value> is a boolean value re ecting the usage of

incremental compilation.

In Gradle command line parameters: add the parameter -Pkotlin.incremental or -

Pkotlin.incremental.js with the boolean value re ecting the usage of incremental

compilation. Note that in this case the parameter should be added to each subsequent build,
and any build with disabled incremental compilation invalidates incremental caches.

Note that the rst build isn't incremental in any case.

The Kotlin plugin supports Gradle Build Cache (Gradle version 4.3 and above is required; caching
is disabled with lower versions).

To disable the caching for all Kotlin tasks, set the system property ag
kotlin.caching.enabled to false (run the build with the argument -

Dkotlin.caching.enabled=false).

If you use kapt, note that the kapt annotation processing tasks are not cached by default.
However, you can enable caching for them manually. See the kapt page for details.

To specify additional compilation options, use the kotlinOptions property of a Kotlin

compilation task.

Annotation Processing

Incremental Compilation

—

—

Gradle Build Cache Support (since 1.2.20)

Compiler Options

523

https://guides.gradle.org/using-build-cache/

When targeting the JVM, the tasks are called compileKotlin for production code and

compileTestKotlin for test code. The tasks for custom source sets are called accordingly to

the compile<Name>Kotlin pattern.

The names of the tasks in Android Projects contain the build variant names and follow the
pattern compile<BuildVariant>Kotlin , for example, compileDebugKotlin ,

compileReleaseUnitTestKotlin .

When targeting JavaScript, the tasks are called compileKotlin2Js and

compileTestKotlin2Js respectively, and compile<Name>Kotlin2Js for custom source

sets.

To con gure a single task, use its name. Examples:

compileKotlin {
 kotlinOptions.suppressWarnings = true
}

//or

compileKotlin {
 kotlinOptions {
 suppressWarnings = true
 }
}

import org.jetbrains.kotlin.gradle.tasks.KotlinCompile
// ...

val compileKotlin: KotlinCompile by tasks

compileKotlin.kotlinOptions.suppressWarnings = true

Note that with Gradle Kotlin DSL, you should get the task from the project's tasks rst.

Use the types Kotlin2JsCompile and KotlinCompileCommon for the JS and Common

targets, accordingly.

It is also possible to con gure all Kotlin compilation tasks in the project:

tasks.withType(org.jetbrains.kotlin.gradle.tasks.KotlinCompile).all {
 kotlinOptions { ... }
}

import org.jetbrains.kotlin.gradle.tasks.KotlinCompile

tasks.withType<KotlinCompile> {
 kotlinOptions.suppressWarnings = true
}

The complete list of options for the Gradle tasks is the following:

524

https://developer.android.com/studio/build/build-variants.html

Name Description Possible values Default value
allWarningsAsErrors Report an error if there are any warnings false
suppressWarnings Generate no warnings false
verbose Enable verbose logging output false
freeCompilerArgs A list of additional compiler arguments []

Name Description Possible values Default
value

apiVersion Allow to use declarations only from the
specified version of bundled libraries

"1.0", "1.1", "1.2", "1.3",
"1.4 (EXPERIMENTAL)"

languageVersion Provide source compatibility with specified
language version

"1.0", "1.1", "1.2", "1.3",
"1.4 (EXPERIMENTAL)"

Name Description Possible values Default
value

javaParameters Generate metadata for Java 1.8 reflection on method
parameters

 false

jdkHome Path to JDK home directory to include into classpath, if
differs from default JAVA_HOME

jvmTarget Target version of the generated JVM bytecode (1.6, 1.8,
9, 10, 11 or 12), default is 1.6

"1.6", "1.8", "9",
"10", "11", "12"

"1.6"

noJdk Don't include Java runtime into classpath false
noReflect Don't include Kotlin reflection implementation into

classpath
 true

noStdlib Don't include Kotlin runtime into classpath true

Name Description Possible values Default
value

friendModulesDisabled Disable internal declaration export false
main Whether a main function should be called "call", "noCall" "call"
metaInfo Generate .meta.js and .kjsm files with

metadata. Use to create a library
 true

moduleKind Kind of a module generated by compiler "plain", "amd",
"commonjs", "umd"

"plain"

noStdlib Don't use bundled Kotlin stdlib true
outputFile Output file path
sourceMap Generate source map false
sourceMapEmbedSources Embed source files into source map "never", "always",

"inlining"

sourceMapPrefix Prefix for paths in a source map
target Generate JS files for specific ECMA version "v5" "v5"
typedArrays Translate primitive arrays to JS typed arrays true

Attributes Common for JVM, JS, and JS DCE

Attributes Common for JVM and JS

Attributes Speci c for JVM

Attributes Speci c for JS

Generating Documentation

525

To generate documentation for Kotlin projects, use Dokka; please refer to the Dokka README for
con guration instructions. Dokka supports mixed-language projects and can generate output in
multiple formats, including standard JavaDoc.

For OSGi support see the Kotlin OSGi page.

When using Gradle Kotlin DSL, apply the Kotlin plugins using the plugins { ... } block. If

you apply them with apply { plugin(...) } instead, you may encounter unresolved

references to the extensions generated by Gradle Kotlin DSL. To resolve that, you can comment
out the erroneous usages, run the Gradle task kotlinDslAccessorsSnapshot , then

uncomment the usages back and rerun the build or reimport the project into the IDE.

The following examples show di erent possibilities of con guring the Gradle plugin:

Kotlin

Mixed Java and Kotlin

Android

JavaScript

OSGi

Using Gradle Kotlin DSL

Examples

—

—

—

—

526

https://github.com/Kotlin/dokka
https://github.com/Kotlin/dokka/blob/master/README.md#using-the-gradle-plugin
https://github.com/gradle/kotlin-dsl
https://github.com/JetBrains/kotlin-examples/tree/master/gradle/hello-world
https://github.com/JetBrains/kotlin-examples/tree/master/gradle/mixed-java-kotlin-hello-world
https://github.com/JetBrains/kotlin-examples/tree/master/gradle/android-mixed-java-kotlin-project
https://github.com/JetBrains/kotlin/tree/master/libraries/tools/kotlin-gradle-plugin-integration-tests/src/test/resources/testProject/kotlin2JsProject

The kotlin-maven-plugin compiles Kotlin sources and modules. Currently only Maven v3 is
supported.

De ne the version of Kotlin you want to use via a kotlin.version property:

<properties>
 <kotlin.version>1.3.50</kotlin.version>
</properties>

Kotlin has an extensive standard library that can be used in your applications. Con gure the
following dependency in the pom le:

<dependencies>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-stdlib</artifactId>
 <version>${kotlin.version}</version>
 </dependency>
</dependencies>

If you're targeting JDK 7 or JDK 8, you can use extended versions of the Kotlin standard library
which contain additional extension functions for APIs added in new JDK versions. Instead of
kotlin-stdlib , use kotlin-stdlib-jdk7 or kotlin-stdlib-jdk8 , depending on your

JDK version (for Kotlin 1.1.x use kotlin-stdlib-jre7 and kotlin-stdlib-jre8 as the

jdk counterparts were introduced in 1.2.0).

If your project uses Kotlin re ection or testing facilities, you need to add the corresponding
dependencies as well. The artifact IDs are kotlin-reflect for the re ection library, and

kotlin-test and kotlin-test-junit for the testing libraries.

To compile source code, specify the source directories in the tag:

<build>
 <sourceDirectory>${project.basedir}/src/main/kotlin</sourceDirectory>
 <testSourceDirectory>${project.basedir}/src/test/kotlin</testSourceDirectory>
</build>

The Kotlin Maven Plugin needs to be referenced to compile the sources:

Using Maven

Plugin and Versions

Dependencies

Compiling Kotlin only source code

527

<build>
 <plugins>
 <plugin>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-plugin</artifactId>
 <version>${kotlin.version}</version>

 <executions>
 <execution>
 <id>compile</id>
 <goals> <goal>compile</goal> </goals>
 </execution>

 <execution>
 <id>test-compile</id>
 <goals> <goal>test-compile</goal> </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

To compile mixed code applications Kotlin compiler should be invoked before Java compiler. In
maven terms that means kotlin-maven-plugin should be run before maven-compiler-plugin using
the following method, making sure that the kotlin plugin is above the maven-compiler-plugin in
your pom.xml le:

Compiling Kotlin and Java sources

528

<build>
 <plugins>
 <plugin>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-plugin</artifactId>
 <version>${kotlin.version}</version>
 <executions>
 <execution>
 <id>compile</id>
 <goals> <goal>compile</goal> </goals>
 <configuration>
 <sourceDirs>
 <sourceDir>${project.basedir}/src/main/kotlin</sourceDir>
 <sourceDir>${project.basedir}/src/main/java</sourceDir>
 </sourceDirs>
 </configuration>
 </execution>
 <execution>
 <id>test-compile</id>
 <goals> <goal>test-compile</goal> </goals>
 <configuration>
 <sourceDirs>
 <sourceDir>${project.basedir}/src/test/kotlin</sourceDir>
 <sourceDir>${project.basedir}/src/test/java</sourceDir>
 </sourceDirs>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.5.1</version>
 <executions>
 <!-- Replacing default-compile as it is treated specially by maven -->
 <execution>
 <id>default-compile</id>
 <phase>none</phase>
 </execution>
 <!-- Replacing default-testCompile as it is treated specially by maven --
>
 <execution>
 <id>default-testCompile</id>
 <phase>none</phase>
 </execution>
 <execution>
 <id>java-compile</id>
 <phase>compile</phase>
 <goals> <goal>compile</goal> </goals>
 </execution>
 <execution>
 <id>java-test-compile</id>
 <phase>test-compile</phase>
 <goals> <goal>testCompile</goal> </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

529

To make your builds faster, you can enable incremental compilation for Maven (supported since
Kotlin 1.1.2). In order to do that, de ne the kotlin.compiler.incremental property:

<properties>
 <kotlin.compiler.incremental>true</kotlin.compiler.incremental>
</properties>

Alternatively, run your build with the -Dkotlin.compiler.incremental=true option.

See the description of Kotlin annotation processing tool (kapt).

Coroutines support is an experimental feature in Kotlin 1.2, so the Kotlin compiler reports a
warning when you use coroutines in your project. To turn o the warning, add the following
block to your pom.xml le:

<configuration>
 <experimentalCoroutines>enable</experimentalCoroutines>
</configuration>

To create a small Jar le containing just the code from your module, include the following under
build->plugins in your Maven pom.xml le, where main.class is de ned as a property

and points to the main Kotlin or Java class:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <archive>
 <manifest>
 <addClasspath>true</addClasspath>
 <mainClass>${main.class}</mainClass>
 </manifest>
 </archive>
 </configuration>
</plugin>

To create a self-contained Jar le containing the code from your module along with
dependencies, include the following under build->plugins in your Maven pom.xml le,

where main.class is de ned as a property and points to the main Kotlin or Java class:

Incremental compilation

Annotation processing

Coroutines support

Jar le

Self-contained Jar le

530

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <id>make-assembly</id>
 <phase>package</phase>
 <goals> <goal>single</goal> </goals>
 <configuration>
 <archive>
 <manifest>
 <mainClass>${main.class}</mainClass>
 </manifest>
 </archive>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 </configuration>
 </execution>
 </executions>
</plugin>

This self-contained jar le can be passed directly to a JRE to run your application:

java -jar target/mymodule-0.0.1-SNAPSHOT-jar-with-dependencies.jar

In order to compile JavaScript code, you need to use the js and test-js goals for the

compile execution:

<plugin>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-plugin</artifactId>
 <version>${kotlin.version}</version>
 <executions>
 <execution>
 <id>compile</id>
 <phase>compile</phase>
 <goals>
 <goal>js</goal>
 </goals>
 </execution>
 <execution>
 <id>test-compile</id>
 <phase>test-compile</phase>
 <goals>
 <goal>test-js</goal>
 </goals>
 </execution>
 </executions>
</plugin>

You also need to change the standard library dependency:

Targeting JavaScript

531

<groupId>org.jetbrains.kotlin</groupId>
<artifactId>kotlin-stdlib-js</artifactId>
<version>${kotlin.version}</version>

For unit testing support, you also need to add a dependency on the kotlin-test-js artifact.

See the Getting Started with Kotlin and JavaScript with Maven tutorial for more information.

Additional options and arguments for the compiler can be speci ed as tags under the
<configuration> element of the Maven plugin node:

<plugin>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-plugin</artifactId>
 <version>${kotlin.version}</version>
 <executions>...</executions>
 <configuration>
 <nowarn>true</nowarn> <!-- Disable warnings -->
 <args>
 <arg>-Xjsr305=strict</arg> <!-- Enable strict mode for JSR-305 annotations --
>
 ...
 </args>
 </configuration>
</plugin>

Many of the options can also be con gured through properties:

<project ...>
 <properties>
 <kotlin.compiler.languageVersion>1.0</kotlin.compiler.languageVersion>
 </properties>
</project>

The following attributes are supported:

Specifying compiler options

Attributes common for JVM and JS

532

Name Property name Description Possible values Default
value

nowarn Generate no warnings true, false false
languageVersion kotlin.compiler.languageVersion Provide source

compatibility with
specified language
version

"1.0", "1.1",
"1.2", "1.3", "1.4
(EXPERIMENTAL)"

apiVersion kotlin.compiler.apiVersion Allow to use
declarations only from
the specified version of
bundled libraries

"1.0", "1.1",
"1.2", "1.3", "1.4
(EXPERIMENTAL)"

sourceDirs The directories
containing the source
files to compile

 The
project
source
roots

compilerPlugins Enabled compiler
plugins

 []

pluginOptions Options for compiler
plugins

 []

args Additional compiler
arguments

 []

Name Property name Description Possible
values

Default
value

jvmTarget kotlin.compiler.jvmTarget Target version of the generated JVM
bytecode

"1.6", "1.8",
"9", "10", "11",
"12"

"1.6"

jdkHome kotlin.compiler.jdkHome Path to JDK home directory to include
into classpath, if differs from default
JAVA_HOME

Name Property
name

Description Possible values Default
value

outputFile Output file path
metaInfo Generate .meta.js and .kjsm files

with metadata. Use to create a
library

true, false true

sourceMap Generate source map true, false false
sourceMapEmbedSources Embed source files into source map "never",

"always",
"inlining"

"inlining"

sourceMapPrefix Prefix for paths in a source map
moduleKind Kind of a module generated by

compiler
"plain", "amd",
"commonjs",
"umd"

"plain"

The standard JavaDoc generation plugin (maven-javadoc-plugin) does not support Kotlin

code. To generate documentation for Kotlin projects, use Dokka; please refer to the Dokka
README for con guration instructions. Dokka supports mixed-language projects and can
generate output in multiple formats, including standard JavaDoc.

Attributes speci c for JVM

Attributes speci c for JS

Generating documentation

OSGi

533

https://github.com/Kotlin/dokka
https://github.com/Kotlin/dokka/blob/master/README.md#using-the-maven-plugin

For OSGi support see the Kotlin OSGi page.

An example Maven project can be downloaded directly from the GitHub repository

Examples

534

https://github.com/JetBrains/kotlin-examples/archive/master/maven.zip

Kotlin provides three tasks for Ant:

kotlinc: Kotlin compiler targeting the JVM;

kotlin2js: Kotlin compiler targeting JavaScript;

withKotlin: Task to compile Kotlin les when using the standard javac Ant task.

These tasks are de ned in the kotlin-ant.jar library which is located in the lib folder for the Kotlin
Compiler Ant version 1.8.2+ is required.

When the project consists of exclusively Kotlin source code, the easiest way to compile the
project is to use the kotlinc task:

<project name="Ant Task Test" default="build">
 <typedef resource="org/jetbrains/kotlin/ant/antlib.xml"
classpath="${kotlin.lib}/kotlin-ant.jar"/>

 <target name="build">
 <kotlinc src="hello.kt" output="hello.jar"/>
 </target>
</project>

where ${kotlin.lib} points to the folder where the Kotlin standalone compiler was

unzipped.

If a project consists of multiple source roots, use src as elements to de ne paths:

<project name="Ant Task Test" default="build">
 <typedef resource="org/jetbrains/kotlin/ant/antlib.xml"
classpath="${kotlin.lib}/kotlin-ant.jar"/>

 <target name="build">
 <kotlinc output="hello.jar">
 <src path="root1"/>
 <src path="root2"/>
 </kotlinc>
 </target>
</project>

If a project consists of both Kotlin and Java source code, while it is possible to use kotlinc, to avoid
repetition of task parameters, it is recommended to use withKotlin task:

Using Ant

Getting the Ant Tasks

—

—

—

Targeting JVM with Kotlin-only source

Targeting JVM with Kotlin-only source and multiple roots

Targeting JVM with Kotlin and Java source

535

https://github.com/JetBrains/kotlin/releases/tag/v1.3.50

<project name="Ant Task Test" default="build">
 <typedef resource="org/jetbrains/kotlin/ant/antlib.xml"
classpath="${kotlin.lib}/kotlin-ant.jar"/>

 <target name="build">
 <delete dir="classes" failonerror="false"/>
 <mkdir dir="classes"/>
 <javac destdir="classes" includeAntRuntime="false" srcdir="src">
 <withKotlin/>
 </javac>
 <jar destfile="hello.jar">
 <fileset dir="classes"/>
 </jar>
 </target>
</project>

You can also specify the name of the module being compiled as the moduleName attribute:

<withKotlin moduleName="myModule"/>

<project name="Ant Task Test" default="build">
 <typedef resource="org/jetbrains/kotlin/ant/antlib.xml"
classpath="${kotlin.lib}/kotlin-ant.jar"/>

 <target name="build">
 <kotlin2js src="root1" output="out.js"/>
 </target>
</project>

<project name="Ant Task Test" default="build">
 <taskdef resource="org/jetbrains/kotlin/ant/antlib.xml"
classpath="${kotlin.lib}/kotlin-ant.jar"/>

 <target name="build">
 <kotlin2js src="root1" output="out.js" outputPrefix="prefix"
outputPostfix="postfix" sourcemap="true"/>
 </target>
</project>

The metaInfo option is useful, if you want to distribute the result of translation as a

Kotlin/JavaScript library. If metaInfo was set to true , then during compilation additional JS le

with binary metadata will be created. This le should be distributed together with the result of
translation:

Targeting JavaScript with single source folder

Targeting JavaScript with Pre x, PostFix and sourcemap options

Targeting JavaScript with single source folder and metaInfo option

536

<project name="Ant Task Test" default="build">
 <typedef resource="org/jetbrains/kotlin/ant/antlib.xml"
classpath="${kotlin.lib}/kotlin-ant.jar"/>

 <target name="build">
 <!-- out.meta.js will be created, which contains binary metadata -->
 <kotlin2js src="root1" output="out.js" metaInfo="true"/>
 </target>
</project>

Complete list of elements and attributes are listed below:

Name Description Required Default Value
src Kotlin source file or directory to compile Yes
nowarn Suppresses all compilation warnings No false
noStdlib Does not include the Kotlin standard library into the classpath No false
failOnError Fails the build if errors are detected during the compilation No true

Name Description Required Default Value
output Destination directory or .jar file name Yes
classpath Compilation class path No
classpathref Compilation class path reference No
includeRuntime If output is a .jar file, whether Kotlin runtime

library is included in the jar
No true

moduleName Name of the module being compiled No The name of the target (if
specified) or the project

Name Description Required
output Destination file Yes
libraries Paths to Kotlin libraries No
outputPrefix Prefix to use for generated JavaScript files No
outputSuffix Suffix to use for generated JavaScript files No
sourcemap Whether sourcemap file should be generated No
metaInfo Whether metadata file with binary descriptors should be generated No
main Should compiler generated code call the main function No

To pass custom raw compiler arguments, you can use <compilerarg> elements with either

value or line attributes. This can be done within the <kotlinc> , <kotlin2js> , and

<withKotlin> task elements, as follows:

References

Attributes common for kotlinc and kotlin2js

kotlinc Attributes

kotlin2js Attributes

Passing raw compiler arguments

537

<kotlinc src="${test.data}/hello.kt" output="${temp}/hello.jar">
 <compilerarg value="-Xno-inline"/>
 <compilerarg line="-Xno-call-assertions -Xno-param-assertions"/>
 <compilerarg value="-Xno-optimize"/>
</kotlinc>

The full list of arguments that can be used is shown when you run kotlinc -help .

538

To enable Kotlin OSGi support you need to include kotlin-osgi-bundle instead of regular

Kotlin libraries. It is recommended to remove kotlin-runtime , kotlin-stdlib and

kotlin-reflect dependencies as kotlin-osgi-bundle already contains all of them. You

also should pay attention in case when external Kotlin libraries are included. Most regular Kotlin
dependencies are not OSGi-ready, so you shouldn't use them and should remove them from
your project.

To include the Kotlin OSGi bundle to a Maven project:

<dependencies>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-osgi-bundle</artifactId>
 <version>${kotlin.version}</version>
 </dependency>
</dependencies>

To exclude the standard library from external libraries (notice that "star exclusion" works in
Maven 3 only):

<dependency>
 <groupId>some.group.id</groupId>
 <artifactId>some.library</artifactId>
 <version>some.library.version</version>

 <exclusions>
 <exclusion>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>*</artifactId>
 </exclusion>
 </exclusions>
</dependency>

To include kotlin-osgi-bundle to a gradle project:

compile "org.jetbrains.kotlin:kotlin-osgi-bundle:$kotlinVersion"

To exclude default Kotlin libraries that comes as transitive dependencies you can use the
following approach:

dependencies {
 compile (
 [group: 'some.group.id', name: 'some.library', version: 'someversion'],
 ) {
 exclude group: 'org.jetbrains.kotlin'
}

Kotlin and OSGi

Maven

Gradle

539

Even though it is the most preferred way to provide OSGi support, unfortunately it couldn't be
done for now due to so called "package split" issue that couldn't be easily eliminated and such a
big change is not planned for now. There is Require-Bundle feature but it is not the best

option too and not recommended to use. So it was decided to make a separate artifact for OSGi.

FAQ

Why not just add required manifest options to all Kotlin libraries

540

http://wiki.osgi.org/wiki/Split_Packages

Kotlin has classes and their members final by default, which makes it inconvenient to use

frameworks and libraries such as Spring AOP that require classes to be open . The all-open

compiler plugin adapts Kotlin to the requirements of those frameworks and makes classes
annotated with a speci c annotation and their members open without the explicit open

keyword.

For instance, when you use Spring, you don't need all the classes to be open, but only classes
annotated with speci c annotations like @Configuration or @Service . All-open allows to

specify such annotations.

We provide all-open plugin support both for Gradle and Maven with the complete IDE integration.

Note: For Spring you can use the kotlin-spring compiler plugin (see below).

Add the plugin artifact to the buildscript dependencies and apply the plugin:

buildscript {
 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-allopen:$kotlin_version"
 }
}

apply plugin: "kotlin-allopen"

As an alternative, you can enable it using the plugins block:

plugins {
 id "org.jetbrains.kotlin.plugin.allopen" version "1.3.50"
}

Then specify the list of annotations that will make classes open:

allOpen {
 annotation("com.my.Annotation")
 // annotations("com.another.Annotation", "com.third.Annotation")
}

If the class (or any of its superclasses) is annotated with com.my.Annotation , the class itself

and all its members will become open.

It also works with meta-annotations:

Compiler Plugins

All-open compiler plugin

Using in Gradle

541

@com.my.Annotation
annotation class MyFrameworkAnnotation

@MyFrameworkAnnotation
class MyClass // will be all-open

MyFrameworkAnnotation is annotated with the all-open meta-annotation

com.my.Annotation , so it becomes an all-open annotation as well.

Here's how to use all-open with Maven:

<plugin>
 <artifactId>kotlin-maven-plugin</artifactId>
 <groupId>org.jetbrains.kotlin</groupId>
 <version>${kotlin.version}</version>

 <configuration>
 <compilerPlugins>
 <!-- Or "spring" for the Spring support -->
 <plugin>all-open</plugin>
 </compilerPlugins>

 <pluginOptions>
 <!-- Each annotation is placed on its own line -->
 <option>all-open:annotation=com.my.Annotation</option>
 <option>all-open:annotation=com.their.AnotherAnnotation</option>
 </pluginOptions>
 </configuration>

 <dependencies>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-allopen</artifactId>
 <version>${kotlin.version}</version>
 </dependency>
 </dependencies>
</plugin>

Please refer to the "Using in Gradle" section above for the detailed information about how all-
open annotations work.

If you use Spring, you can enable the kotlin-spring compiler plugin instead of specifying Spring
annotations manually. The kotlin-spring is a wrapper on top of all-open, and it behaves exactly
the same way.

As with all-open, add the plugin to the buildscript dependencies:

Using in Maven

Spring support

542

buildscript {
 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-allopen:$kotlin_version"
 }
}

apply plugin: "kotlin-spring" // instead of "kotlin-allopen"

Or using the Gradle plugins DSL:

plugins {
 id "org.jetbrains.kotlin.plugin.spring" version "1.3.50"
}

In Maven, enable the spring plugin:

<compilerPlugins>
 <plugin>spring</plugin>
</compilerPlugins>

The plugin speci es the following annotations: @Component, @Async, @Transactional,

@Cacheable and @SpringBootTest. Thanks to meta-annotations support classes annotated

with @Configuration, @Controller, @RestController, @Service or @Repository are

automatically opened since these annotations are meta-annotated with @Component.

Of course, you can use both kotlin-allopen and kotlin-spring in the same project.

Note that if you use the project template generated by the start.spring.io service, the kotlin-

spring plugin will be enabled by default.

All-open compiler plugin JAR is available in the binary distribution of the Kotlin compiler. You can
attach the plugin by providing the path to its JAR le using the Xplugin kotlinc option:

-Xplugin=$KOTLIN_HOME/lib/allopen-compiler-plugin.jar

You can specify all-open annotations directly, using the annotation plugin option, or enable

the "preset". The only preset available now for all-open is spring .

The plugin option format is: "-P plugin:<plugin id>:<key>=<value>".
Options can be repeated.

-P plugin:org.jetbrains.kotlin.allopen:annotation=com.my.Annotation
-P plugin:org.jetbrains.kotlin.allopen:preset=spring

The no-arg compiler plugin generates an additional zero-argument constructor for classes with a
speci c annotation.

Using in CLI

No-arg compiler plugin

543

http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Component.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/scheduling/annotation/Async.html
http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html
http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/cache/annotation/Cacheable.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/test/context/SpringBootTest.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/Configuration.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Controller.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/RestController.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/stereotype/Service.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Repository.html
http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Component.html
http://start.spring.io/#!language=kotlin

The generated constructor is synthetic so it can’t be directly called from Java or Kotlin, but it can
be called using re ection.

This allows the Java Persistence API (JPA) to instantiate a class although it doesn't have the zero-
parameter constructor from Kotlin or Java point of view (see the description of kotlin-jpa

plugin below).

The usage is pretty similar to all-open.

Add the plugin and specify the list of annotations that must lead to generating a no-arg
constructor for the annotated classes.

buildscript {
 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-noarg:$kotlin_version"
 }
}

apply plugin: "kotlin-noarg"

Or using the Gradle plugins DSL:

plugins {
 id "org.jetbrains.kotlin.plugin.noarg" version "1.3.50"
}

Then specify the list of no-arg annotations:

noArg {
 annotation("com.my.Annotation")
}

Enable invokeInitializers option if you want the plugin to run the initialization logic from

the synthetic constructor. Starting from Kotlin 1.1.3-2, it is disabled by default because of KT-

18667 and KT-18668 which will be addressed in the future.

noArg {
 invokeInitializers = true
}

Using in Gradle

Using in Maven

544

https://youtrack.jetbrains.com/issue/KT-18667
https://youtrack.jetbrains.com/issue/KT-18668

<plugin>
 <artifactId>kotlin-maven-plugin</artifactId>
 <groupId>org.jetbrains.kotlin</groupId>
 <version>${kotlin.version}</version>

 <configuration>
 <compilerPlugins>
 <!-- Or "jpa" for JPA support -->
 <plugin>no-arg</plugin>
 </compilerPlugins>

 <pluginOptions>
 <option>no-arg:annotation=com.my.Annotation</option>
 <!-- Call instance initializers in the synthetic constructor -->
 <!-- <option>no-arg:invokeInitializers=true</option> -->
 </pluginOptions>
 </configuration>

 <dependencies>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-noarg</artifactId>
 <version>${kotlin.version}</version>
 </dependency>
 </dependencies>
</plugin>

As with the kotlin-spring plugin, kotlin-jpa is a wrapped on top of no-arg. The plugin speci es
@Entity, @Embeddable and @MappedSuperclass no-arg annotations automatically.

That's how you add the plugin in Gradle:

buildscript {
 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-noarg:$kotlin_version"
 }
}

apply plugin: "kotlin-jpa"

Or using the Gradle plugins DSL:

plugins {
 id "org.jetbrains.kotlin.plugin.jpa" version "1.3.50"
}

In Maven, enable the jpa plugin:

<compilerPlugins>
 <plugin>jpa</plugin>
</compilerPlugins>

JPA support

Using in CLI

545

http://docs.oracle.com/javaee/7/api/javax/persistence/Entity.html
http://docs.oracle.com/javaee/7/api/javax/persistence/Embeddable.html
https://docs.oracle.com/javaee/7/api/javax/persistence/MappedSuperclass.html

As with all-open, add the plugin JAR le to the compiler plugin classpath and specify annotations
or presets:

-Xplugin=$KOTLIN_HOME/lib/noarg-compiler-plugin.jar
-P plugin:org.jetbrains.kotlin.noarg:annotation=com.my.Annotation
-P plugin:org.jetbrains.kotlin.noarg:preset=jpa

The sam-with-receiver compiler plugin makes the rst parameter of the annotated Java "single
abstract method" (SAM) interface method a receiver in Kotlin. This conversion only works when
the SAM interface is passed as a Kotlin lambda, both for SAM adapters and SAM constructors (see
the documentation for more details).

Here is an example:

public @interface SamWithReceiver {}

@SamWithReceiver
public interface TaskRunner {
 void run(Task task);
}

fun test(context: TaskContext) {
 val runner = TaskRunner {
 // Here 'this' is an instance of 'Task'

 println("$name is started")
 context.executeTask(this)
 println("$name is finished")
 }
}

The usage is the same to all-open and no-arg, except the fact that sam-with-receiver does not
have any built-in presets, and you need to specify your own list of special-treated annotations.

buildscript {
 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-sam-with-receiver:$kotlin_version"
 }
}

apply plugin: "kotlin-sam-with-receiver"

Then specify the list of SAM-with-receiver annotations:

samWithReceiver {
 annotation("com.my.SamWithReceiver")
}

SAM-with-receiver compiler plugin

Using in Gradle

Using in Maven

546

https://kotlinlang.org/docs/reference/java-interop.html#sam-conversions

<plugin>
 <artifactId>kotlin-maven-plugin</artifactId>
 <groupId>org.jetbrains.kotlin</groupId>
 <version>${kotlin.version}</version>

 <configuration>
 <compilerPlugins>
 <plugin>sam-with-receiver</plugin>
 </compilerPlugins>

 <pluginOptions>
 <option>
 sam-with-receiver:annotation=com.my.SamWithReceiver
 </option>
 </pluginOptions>
 </configuration>

 <dependencies>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-sam-with-receiver</artifactId>
 <version>${kotlin.version}</version>
 </dependency>
 </dependencies>
</plugin>

Just add the plugin JAR le to the compiler plugin classpath and specify the list of sam-with-
receiver annotations:

-Xplugin=$KOTLIN_HOME/lib/sam-with-receiver-compiler-plugin.jar
-P plugin:org.jetbrains.kotlin.samWithReceiver:annotation=com.my.SamWithReceiver

Using in CLI

547

Kotlin Coding Conventions a ect several aspects of writing idiomatic Kotlin, and a set of
formatting recommendations aimed at improving Kotlin code readability is among them.

Unfortunately, the code formatter built into IntelliJ IDEA had to work long before this document
was released and now has a default setup that produces di erent formatting from what is now
recommended.

It may seem a logical next step to remove this obscurity by switching the defaults in IntelliJ IDEA
and make formatting consistent with the Kotlin Coding Conventions. But this would mean that all
the existing Kotlin projects will have a new code style enabled the moment the Kotlin plugin is
installed. Not really the expected result for plugin update, right?

That's why we have the following migration plan instead:

Enable the o cial code style formatting by default starting from Kotlin 1.3 and only for new
projects (old formatting can be enabled manually)

Authors of existing projects may choose to migrate to the Kotlin Coding Conventions

Authors of existing projects may choose to explicitly declare using the old code style in a
project (this way the project won't be a ected by switching to the defaults in the future)

Switch to the default formatting and make it consistent with Kotlin Coding Conventions in
Kotlin 1.4

The most notable change is in the continuation indentation policy. There's a nice idea to use the
double indent for showing that a multi-line expression hasn't ended on the previous line. This is
a very simple and general rule, but several Kotlin constructions look a bit awkward when they are
formatted this way. In Kotlin Coding Conventions it's recommended to use a single indent in
cases where the long continuation indent has been forced before

In practice, quite a bit of code is a ected, so this can be considered a major code style update.

A new code style adoption might be a very natural process if it starts with a new project, when
there's no code formatted in the old way. That is why starting from version 1.3, the Kotlin IntelliJ
Plugin creates new projects with formatting from the Code Conventions document which is
enabled by default.

Changing formatting in an existing project is a far more demanding task, and should probably be
started with discussing all the caveats with the team.

Code Style Migration Guide

Kotlin Coding Conventions and IntelliJ IDEA formatter

—

—

—

—

Di erences between "Kotlin Coding Conventions" and "IntelliJ IDEA default
code style"

Migration to a new code style discussion

548

https://kotlinlang.org/docs/reference/coding-conventions.html

The main disadvantage of changing the code style in an existing project is that the
blame/annotate VCS feature will point to irrelevant commits more often. While each VCS has
some kind of way to deal with this problem ("Annotate Previous Revision" can be used in IntelliJ
IDEA), it's important to decide if a new style is worth all the e ort. The practice of separating
reformatting commits from meaningful changes can help a lot with later investigations.

Also migrating can be harder for larger teams because committing a lot of les in several
subsystems may produce merging con icts in personal branches. And while each con ict
resolution is usually trivial, it's still wise to know if there are large feature branches currently in
work.

In general, for small projects, we recommend converting all the les at once.

For medium and large projects the decision may be tough. If you are not ready to update many
les right away you may decide to migrate module by module, or continue with gradual migration

for modi ed les only.

Switching to the Kotlin Coding Conventions code style can be done in Settings → Editor →

Code Style → Kotlin dialog. Switch scheme to Project and activate Set from... →

Predefined Style → Kotlin Style Guide .

In order to share those changes for all project developers .idea/codeStyle folder have to be

committed to VCS.

If an external build system is used for con guring the project, and it's been decided not to share
.idea/codeStyle folder, Kotlin Coding Conventions can be forced with an additional property:

Add kotlin.code.style=o cial property to the gradle.properties le at the project root and
commit the le to VCS.

Add kotlin.code.style o cial property to root pom.xml project le.

<properties>
 <kotlin.code.style>official</kotlin.code.style>
</properties>

Warning: having the kotlin.code.style option set may modify the code style scheme during a
project import and may change the code style settings.

After updating your code style settings, activate “Reformat Code” in the project view on the
desired scope.

Migration to a new code style

In Gradle

In Maven

549

https://www.jetbrains.com/help/idea/investigate-changes.html

For a gradual migration, it's possible to enable the "File is not formatted according to project
settings" inspection. It will highlight the places that should be reformatted. After enabling the
"Apply only to modi ed les" option, inspection will show formatting problems only in modi ed

les. Such les are probably going to be committed soon anyway.

It's always possible to explicitly set the IntelliJ IDEA code style as the correct code style for the
project. To do so please switch to the Project scheme in Settings → Editor → Code Style

→ Kotlin and select "Kotlin obsolete IntelliJ IDEA codestyle" in the "Use defaults from:" on the Load

tab.

In order to share the changes across the project developers .idea/codeStyle folder, it has to

be committed to VCS. Alternatively kotlin.code.style=obsolete can be used for projects
con gured with Gradle or Maven.

Store old code style in project

550

Evolution

 Language design is cast in stone,
 but this stone is reasonably soft,
 and with some effort we can reshape it later.

 Kotlin Design Team

Kotlin is designed to be a pragmatic tool for programmers. When it comes to language evolution,
its pragmatic nature is captured by the following principles:

Keep the language modern over the years.

Stay in the constant feedback loop with the users.

Make updating to new versions comfortable for the users.

As this is key to understanding how Kotlin is moving forward, let's expand on these principles.

Keeping the Language Modern. We acknowledge that systems accumulate legacy over time.
What had once been cutting-edge technology can be hopelessly outdated today. We have to
evolve the language to keep it relevant to the needs of the users and up-to-date with their
expectations. This includes not only adding new features, but also phasing out old ones that are
no longer recommended for production use and have altogether become legacy.

Comfortable Updates. Incompatible changes, such as removing things from a language, may
lead to painful migration from one version to the next if carried out without proper care. We will
always announce such changes well in advance, mark things as deprecated and provide
automated migration tools before the change happens. By the time the language is changed we
want most of the code in the world to be already updated and thus have no issues migrating to
the new version.

Kotlin Evolution

Principles of Pragmatic Evolution

—

—

—

551

Feedback Loop. Going through deprecation cycles requires signi cant e ort, so we want to
minimize the number of incompatible changes we'll be making in the future. Apart from using
our best judgement, we believe that trying things out in real life is the best way to validate a
design. Before casting things in stone we want them battle-tested. This is why we use every
opportunity to make early versions of our designs available in production versions of the
language, but with experimental status. Experimental features are not stable, they can be changed
at any time, and the users that opt into using them do so explicitly to indicate that they are ready
to deal with the future migration issues. These users provide invaluable feedback that we gather
to iterate on the design and make it rock-solid.

If, upon updating from one version to another, some code that used to work doesn't work any
more, it is an incompatible change in the language (sometimes referred to as "breaking change").
There can be debates as to what "doesn't work any more" means precisely in some cases, but it
de nitely includes the following:

Code that compiled and ran ne is now rejected with an error (at compile or link time). This
includes removing language constructs and adding new restrictions.

Code that executed normally is now throwing an exception.

The less obvious cases that belong to the "grey area" include handling corner cases di erently,
throwing an exception of a di erent type than before, changing behavior observable only
through re ection, changes in undocumented/unde ned behavior, renaming binary artifacts, etc.
Sometimes such changes are very important and a ect migration experience dramatically,
sometimes they are insigni cant.

Some examples of what de nitely isn't an incompatible change include

Adding new warnings.

Enabling new language constructs or relaxing limitations for existing ones.

Changing private/internal APIs and other implementation details.

The principles of Keeping the Language Modern and Comfortable Updates suggest that
incompatible changes are sometimes necessary, but they should be introduced carefully. Our
goal is to make the users aware of upcoming changes well in advance to let them migrate their
code comfortably.

Ideally, every incompatible change should be announced through a compile-time warning
reported in the problematic code (usually referred to as a deprecation warning) and accompanied
with automated migration aids. So, the ideal migration work ow goes as follows:

Update to version A (where the change is announced)

See warnings about the upcoming change

Migrate the code with the help of the tooling

Incompatible Changes

—

—

—

—

—

—

—

—

552

Update to version B (where the change happens)

See no issues at all

In practice some changes can't be accurately detected at compile time, so no warnings can be
reported, but at least the users will be noti ed through Release notes of version A that a change
is coming in version B.

Compilers are complicated software and despite the best e ort of their developers they have
bugs. The bugs that cause the compiler itself to fail or report spurious errors or generate
obviously failing code, though annoying and often embarrassing, are easy to x, because the xes
do not constitute incompatible changes. Other bugs may cause the compiler to generate
incorrect code that does not fail: e.g. by missing some errors in the source or simply generating
wrong instructions. Fixes of such bugs are technically incompatible changes (some code used to
compile ne, but now it won't any more), but we are inclined to xing them as soon as possible to
prevent the bad code patterns from spreading across user code. In our opinion, this serves the
principle of Comfortable Updates, because fewer users have a chance of encountering the issue.
Of course, this applies only to bugs that are found soon after appearing in a released version.

JetBrains, the original creator of Kotlin, is driving its progress with the help of the community and
in accord with the Kotlin Foundation.

All changes to the Kotlin Programming Language are overseen by the Lead Language Designer
(currently Andrey Breslav). The Lead Designer has the nal say in all matters related to language
evolution. Additionally, incompatible changes to fully stable components have to be approved to
by the Language Committee designated under the Kotlin Foundation (currently comprised of
Je rey van Gogh, William R. Cook and Andrey Breslav).

The Language Committee makes nal decisions on what incompatible changes will be made and
what exact measures should be taken to make user updates comfortable. In doing so, it relies on
a set of guidelines available here.

Stable releases with versions 1.2, 1.3, etc. are usually considered to be feature releases bringing
major changes in the language. Normally, we publish incremental releases, numbered 1.2.20,
1.2.30, etc, in between feature releases.

Incremental releases bring updates in the tooling (often including features), performance
improvements and bug xes. We try to keep such versions compatible with each other, so
changes to the compiler are mostly optimizations and warning additions/removals. Experimental
features may, of course, be added, removed or changed at any time.

—

—

Dealing with compiler bugs

Decision Making

Feature Releases and Incremental Releases

553

https://jetbrains.com

Feature releases often add new features and may remove or change previously deprecated ones.
Feature graduation from experimental to stable also happens in feature releases.

Before releasing stable versions, we usually publish a number of preview builds dubbed EAP (for
"Early Access Preview") that let us iterate faster and gather feedback from the community. EAPs
of feature releases usually produce binaries that will be later rejected by the stable compiler to
make sure that possible bugs in the binary format survive no longer than the preview period.
Final Release Candidates normally do not bear this limitation.

According to the Feedback Loop principle described above, we iterate on our designs in the open
and release versions of the language where some features have the experimental status and are
supposed to change. Experimental features can be added, changed or removed at any point and
without warning. We make sure that experimental features can't be used accidentally by an
unsuspecting user. Such features usually require some sort of an explicit opt-in either in the code
or in the project con guration.

Experimental features usually graduate to the stable status after some iterations.

To check the stability status of di erent components of Kotlin (Kotlin/JVM, JS, Native, various
libraries, etc), please consult this link.

A language is nothing without its ecosystem, so we pay extra attention to enabling smooth library
evolution.

Ideally, a new version of a library can be used as a "drop-in replacement" for an older version.
This means that upgrading a binary dependency should not break anything, even if the
application is not recompiled (this is possible under dynamic linking).

On the one hand, to achieve this, the compiler has to provide certain ABI stability guarantees
under the constraints of separate compilation. This is why every change in the language is
examined from the point of view of binary compatibility.

On the other hand, a lot depends on the library authors being careful about which changes are
safe to make. Thus it's very important that library authors understand how source changes a ect
compatibility and follow certain best practices to keep both APIs and ABIs of their libraries stable.
Here are some assumptions that we make when considering language changes from the library
evolution standpoint:

EAP Builds

Experimental features

Status of di erent components

Libraries

554

Library code should always specify return types of public/protected functions and properties
explicitly thus never relying on type inference for public API. Subtle changes in type inference
may cause return types to change inadvertently, leading to binary compatibility issues.

Overloaded functions and properties provided by the same library should do essentially the
same thing. Changes in type inference may result in more precise static types to be known at
call sites causing changes in overload resolution.

Library authors can use the @Deprecated and @Experimental annotations to control the
evolution of their API surface. Note that @Deprecated(level=HIDDEN) can be used to preserve
binary compatibility even for declarations removed from the API.

Also, by convention, packages named "internal" are not considered public API. All API residing in
packages named "experimental" is considered experimental and can change at any moment.

We evolve the Kotlin Standard Library (kotlin-stdlib) for stable platforms according to the
principles stated above. Changes to the contracts for its API undergo the same procedures as
changes in the language itself.

Command line keys accepted by the compiler are also a kind of public API, and they are subject
to the same considerations. Supported ags (those that don't have the "-X" or "-XX" pre x) can be
added only in feature releases and should be properly deprecated before removing them. The "-
X" and "-XX" ags are experimental and can be added and removed at any time.

As legacy features get removed and bugs xed, the source language changes, and old code that
has not been properly migrated may not compile any more. The normal deprecation cycle allows
a comfortable period of time for migration, and even when it's over and the change ships in a
stable version, there's still a way to compile unmigrated code.

We provide the -language-version and -api-version ags that make a new version emulate the
behaviour of an old one, for compatibility purposes. Normally, at least one previous version is
supported. This e ectively leaves a time span of two full feature release cycles for migration
(which usually amounts to about two years). Using an older kotlin-stdlib or kotlin-re ect with a
newer compiler without specifying compatibility ags is not recommended, and the compiler will
report a warning when this happens.

Actively maintained code bases can bene t from getting bug xes ASAP, without waiting for a full
deprecation cycle to complete. Currently such project can enable the -progressive ag and get
such xes enabled even in incremental releases.

All ags are available on the command line as well as Gradle and Maven.

—

—

Compiler Keys

Compatibility Tools

Compatibility ags

555

Unlike sources that can be xed by hand in the worst case, binaries are a lot harder to migrate,
and this makes backwards compatibility very important in the case of binaries. Incompatible
changes to binaries can make updates very uncomfortable and thus should be introduced with
even more care than those in the source language syntax.

For fully stable versions of the compiler the default binary compatibility protocol is the following:

All binaries are backwards compatible, i.e. a newer compiler can read older binaries (e.g. 1.3
understands 1.0 through 1.2),

Older compilers reject binaries that rely on new features (e.g. a 1.0 compiler rejects binaries
that use coroutines).

Preferably (but we can't guarantee it), the binary format is mostly forwards compatible with
the next feature release, but not later ones (in the cases when new features are not used, e.g.
1.3 can understand most binaries from 1.4, but not 1.5).

This protocol is designed for comfortable updates as no project can be blocked from updating its
dependencies even if it's using a slightly outdated compiler.

Please note that not all target platforms have reached this level of stability (but Kotlin/JVM has).

Evolving the binary format

—

—

—

556

There can be di erent modes of stability depending of how quickly a component is evolving:

Moving fast (MF): no compatibility should be expected between even incremental releases,
any functionality can be added, removed or changed without warning.

Additions in Incremental Releases (AIR): things can be added in an incremental release,
removals and changes of behavior should be avoided and announced in a previous
incremental release if necessary.

Stable Incremental Releases (SIR): incremental releases are fully compatible, only
optimizations and bug xes happen. Any changes can be made in a feature release.

Fully Stable (FS): incremental releases are fully compatible, only optimizations and bug xes
happen. Feature releases are backwards compatible.

Source and binary compatibility may have di erent modes for the same component, e.g. the
source language can reach full stability before the binary format stabilizes, or vice versa.

The provisions of the Kotlin evolution policy fully apply only to components that have reached
Full Stability (FS). From that point on incompatible changes have to be approved by the Language
Committee.

Component Status Entered at
version

Mode for
Sources

Mode for
Binaries

Kotlin/JVM 1.0 FS FS
kotlin-stdlib (JVM) 1.0 FS FS
KDoc syntax 1.0 FS N/A
Coroutines 1.3 FS FS
kotlin-reflect (JVM) 1.0 SIR SIR
Kotlin/JS 1.1 AIR MF
Kotlin/Native 1.3 AIR MF
Kotlin Scripts (*.kts) 1.2 AIR MF
dokka 0.1 MF N/A
Kotlin Scripting APIs 1.2 MF MF
Compiler Plugin API 1.0 MF MF
Serialization 1.3 MF MF
Multiplatform Projects 1.2 MF MF
Inline classes 1.3 MF MF
Unsigned arithmetics 1.3 MF MF
All other experimental features, by
default

N/A MF MF

Stability of Di erent Components

—

—

—

—

557

Keeping the Language Modern and Comfortable Updates are among the fundamental principles in
Kotlin Language Design. The former says that constructions which obstruct language evolution
should be removed, and the latter says that this removal should be well-communicated
beforehand to make code migration as smooth as possible.

While most of the language changes were already announced through other channels, like
update changelogs or compiler warnings, this document summarizes them all, providing a
complete reference for migration from Kotlin 1.2 to Kotlin 1.3

In this document we introduce several kinds of compatibility:

Source: source-incompatible change stops code that used to compile ne (without errors or
warnings) from compiling anymore

Binary: two binary artifacts are said to be binary-compatible if interchanging them doesn't
lead to loading or linkage errors

Behavioral: a change is said to be behavioral-incompatible if one and the same program
demonstrates di erent behavior before and after applying the change

One has to remember that those de nitions are given only for pure Kotlin. Compatibility of Kotlin
code from the other languages perspective (e.g. from Java) is out of the scope of this document.

Issue: KT-19532

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: evaluation order with respect to class initialization is changed in 1.3

Deprecation cycle:

<1.3: old behavior (see details in the Issue)

>= 1.3: behavior changed, -Xnormalize-constructor-calls=disable can be used to

temporarily revert to pre-1.3 behavior. Support for this ag is going to be removed in the
next major release.

Compatibility Guide for Kotlin 1.3

Basic terms

—

—

—

Evaluation order of constructor arguments regarding <clinit> call

—

—

Missing getter-targeted annotations on annotation constructor parameters

558

https://youtrack.jetbrains.com/issue/KT-19532

Issue: KT-25287

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: getter-target annotations on annotations constructor parameters will be
properly written to class les in 1.3

Deprecation cycle:

<1.3: getter-target annotations on annotation constructor parameters are not applied

>=1.3: getter-target annotations on annotation constructor parameters are properly
applied and written to the generated code

Issue: KT-19628

Component: Core language

Incompatible change type: Source

Short summary: errors in getter-target annotations will be reported properly in 1.3

Deprecation cycle:

<1.2: compilation errors in getter-target annotations were not reported, causing incorrect
code to be compiled ne.

1.2.x: errors reported only by tooling, the compiler still compiles such code without any
warnings

>=1.3: errors reported by the compiler too, causing erroneous code to be rejected

—

—

Missing errors in class constructor’s @get: annotations

—

—

—

Nullability assertions on access to Java types annotated with @NotNull

559

https://youtrack.jetbrains.com/issue/KT-25287
https://youtrack.jetbrains.com/issue/KT-19628

Issue: KT-20830

Component: Kotlin/JVM

Incompatible change type: Behavioral

Short summary: nullability assertions for Java-types annotated with not-null annotations will
be generated more aggressively, causing code which passes null here to fail faster.

Deprecation cycle:

<1.3: the compiler could miss such assertions when type inference was involved, allowing
potential null propagation during compilation against binaries (see Issue for details).

>=1.3: the compiler generates missed assertions. This can case code which was
(erroneously) passing nulls here fail faster.

-XXLanguage:-StrictJavaNullabilityAssertions can be used to temporarily

return to the pre-1.3 behavior. Support for this ag will be removed in the next major
release.

Issue: KT-20772

Component: Core language

Incompatible change type: Source

Short summary: a smartcast on a member of one enum entry will be correctly applied to
only this enum entry

Deprecation cycle:

<1.3: a smartcast on a member of one enum entry could lead to an unsound smartcast on
the same member of other enum entries.

>=1.3: smartcast will be properly applied only to the member of one enum entry.
-XXLanguage:-SoundSmartcastForEnumEntries will temporarily return old

behavior. Support for this ag will be removed in the next major release.

—

—

Unsound smartcasts on enum members

—

—

val backing eld reassignment in getter

560

https://youtrack.jetbrains.com/issue/KT-20830
https://youtrack.jetbrains.com/issue/KT-20772

Issue: KT-16681

Components: Core language

Incompatible change type: Source

Short summary: reassignment of the backing eld of val-property in its getter is now

prohibited

Deprecation cycle:

<1.2: Kotlin compiler allowed to modify backing eld of val in its getter. Not only it

violates Kotlin semantic, but also generates ill-behaved JVM bytecode which reassigns
final eld.

1.2.X: deprecation warning is reported on code which reassigns backing eld of val

>=1.3: deprecation warnings are elevated to errors

Issue: KT-21354

Component: Kotlin/JVM

Incompatible change type: Source

Short summary: if an expression in for-loop range is a local variable updated in a loop body,
this change a ects loop execution. This is inconsistent with iterating over other containers,
such as ranges, character sequences, and collections.

Deprecation cycle:

<1.2: described code patterns are compiled ne, but updates to local variable a ect loop
execution

1.2.X: deprecation warning reported if a range expression in a for-loop is an array-typed
local variable which is assigned in a loop body

1.3: change behavior in such cases to be consistent with other containers

—

—

—

Array capturing before the for-loop where it is iterated

—

—

—

Nested classi ers in enum entries

561

https://youtrack.jetbrains.com/issue/KT-16681
https://youtrack.jetbrains.com/issue/KT-21354

Issue: KT-16310

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3, nested classi ers (classes, object, interfaces, annotation
classes, enum classes) in enum entries are prohibited

Deprecation cycle:

<1.2: nested classi ers in enum entries are compiled ne, but may fail with exception at
runtime

1.2.X: deprecation warnings reported on the nested classi ers

>=1.3: deprecation warnings elevated to errors

Issue: KT-19618

Components: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3, data classes are prohibited to override copy()

Deprecation cycle:

<1.2: data classes overriding copy() are compiled ne but may fail at runtime/expose

strange behavior

1.2.X: deprecation warnings reported on data classes overriding copy()

>=1.3: deprecation warnings elevated to errors

—

—

—

Data class overriding copy

—

—

—

Inner classes inheriting Throwable that capture generic parameters from the

outer class

562

https://youtrack.jetbrains.com/issue/KT-16310
https://youtrack.jetbrains.com/issue/KT-19618

Issue: KT-17981

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3, inner classes are not allowed to inherit Throwable

Deprecation cycle:

<1.2: inner classes inheriting Throwable are compiled ne. If such inner classes happen

to capture generic parameters, it could lead to strange code patterns which fail at
runtime.

1.2.X: deprecation warnings reported on inner classes inheriting Throwable

>=1.3: deprecation warnings elevated to errors

Issues: KT-21515, KT-25333

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3, rules of visibility by short names are stricter for complex
class hierarchies involving companion objects and nested classi ers.

Deprecation cycle:

<1.2: old visibility rules (see Issue for details)

1.2.X: deprecation warnings reported on short names which are not going to be
accessible anymore. Tooling suggests automated migration by adding full name.

>=1.3: deprecation warnings elevated to errors. O ending code should add full quali ers
or explicit imports

—

—

—

Visibility rules regarding complex class hierarchies with companion objects

—

—

—

Non-constant vararg annotation parameters

563

https://youtrack.jetbrains.com/issue/KT-17981
https://youtrack.jetbrains.com/issue/KT-21515
https://youtrack.jetbrains.com/issue/KT-25333

Issue: KT-23153

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3, setting non-constant values as vararg annotation
parameters is prohibited

Deprecation cycle:

<1.2: the compiler allows to pass non-constant value for vararg annotation parameter, but
actually drops that value during bytecode generation, leading to non-obvious behavior

1.2.X: deprecation warnings reported on such code patterns

>=1.3: deprecation warnings elevated to errors

Issue: KT-23277

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3 local annotation classes are not supported

Deprecation cycle:

<1.2: the compiler compiled local annotation classes ne

1.2.X: deprecation warnings reported on local annotation classes

>=1.3: deprecation warnings elevated to errors

—

—

—

Local annotation classes

—

—

—

Smartcasts on local delegated properties

564

https://youtrack.jetbrains.com/issue/KT-23153
https://youtrack.jetbrains.com/issue/KT-23277

Issue: KT-22517

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3 smartcasts on local delegated properties are not allowed

Deprecation cycle:

<1.2: the compiler allowed to smartcast local delegated property, which could lead to
unsound smartcast in case of ill-behaved delegates

1.2.X: smartcasts on local delegated properries are reported as deprecated (the compiler
issues warnings)

>=1.3: deprecation warnings elevated to errors

Issues: KT-24197

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3 declaration of mod operator is prohibited, as well as calls

which resolve to such declarations

Deprecation cycle:

1.1.X, 1.2.X: report warnings on declarations of operator mod, as well as on calls which

resolve to it

1.3.X: elevate warnings to error, but still allow to resolve to operator mod declarations

1.4.X: do not resolve calls to operator mod anymore

—

—

—

mod operator convention

—

—

—

Passing single element to vararg in named form

565

https://youtrack.jetbrains.com/issue/KT-22517
https://youtrack.jetbrains.com/issue/KT-24197

Issues: KT-20588, KT-20589. See also KT-20171

Component: Core language

Incompatible change type: Source

Short summary: in Kotlin 1.3, assigning single element to vararg is deprecated and should
be replaced with consecutive spread and array construction.

Deprecation cycle:

<1.2: assigning one value element to vararg in named form compiles ne and is treated as
assigning single element to array, causing non-obvious behavior when assigning array to
vararg

1.2.X: deprecation warnings are reported on such assignments, users are suggested to
switch to consecutive spread and array construction.

1.3.X: warnings are elevated to errors

>= 1.4: change semantic of assigning single element to vararg, making assignment of array
equivalent to the assignment of a spread of an array

Issue: KT-13762

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3, only SOURCE retention is allowed for annotations with

target EXPRESSION

Deprecation cycle:

<1.2: annotations with target EXPRESSION and retention other than SOURCE are allowed,

but silently ignored at use-sites

1.2.X: deprecation warnings are reported on declarations of such annotations

>=1.3: warnings are elevated to errors

—

—

—

—

Retention of annotations with target EXPRESSION

—

—

—

Annotations with target PARAMETER shouldn't be applicable to parameter's type

566

https://youtrack.jetbrains.com/issue/KT-20588
https://youtrack.jetbrains.com/issue/KT-20589
https://youtrack.jetbrains.com/issue/KT-20171
https://youtrack.jetbrains.com/issue/KT-13762

Issue: KT-9580

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3, error about wrong annotation target will be properly
reported when annotation with target PARAMETER is applied to parameter's type

Deprecation cycle:

<1.2: aforementioned code patterns are compiled ne; annotations are silently ignored
and not present in the bytecode

1.2.X: deprecation warnings are reported on such usages

>=1.3: warnings are elevated to errors

Issue: KT-19489

Component: kotlin-stdlib (JVM)

Incompatible change type: Behavioral

Short summary: since Kotlin 1.3, ensure that the toIndex argument of

Array.copyOfRange, which represents the exclusive end of the range being copied, is not

greater than the array size and throw IllegalArgumentException if it is.

Deprecation cycle:

<1.3: in case toIndex in the invocation of Array.copyOfRange is greater than the array

size, the missing elements in range ll be lled with nulls, violating soundness of the

Kotlin type system.

>=1.3: check that toIndex is in the array bounds, and throw exception if it isn't

—

—

—

Array.copyOfRange throws an exception when indices are out of bounds instead

of enlarging the returned array

—

—

Progressions of ints and longs with a step of Int.MIN_VALUE and Long.MIN_VALUE

are outlawed and won’t be allowed to be instantiated

567

https://youtrack.jetbrains.com/issue/KT-9580
https://youtrack.jetbrains.com/issue/KT-19489

Issue: KT-17176

Component: kotlin-stdlib (JVM)

Incompatible change type: Behavioral

Short summary: since Kotlin 1.3, prohibit step value for integer progressions being the
minimum negative value of its integer type (Long or Int), so that calling

IntProgression.fromClosedRange(0, 1, step = Int.MIN_VALUE) will throw

IllegalArgumentException

Deprecation cycle:

<1.3: it was possible to create an IntProgression with Int.MIN_VALUE step, which

yields two values [0, -2147483648], which is non-obvious behavior

>=1.3: throw IllegalArgumentException if the step is the minimum negative value of

its integer type

Issue: KT-16097

Component: kotlin-stdlib (JVM)

Incompatible change type: Behavioral

Short summary: since Kotlin 1.3, make sure index, count and similar methods do not

over ow for long sequences. See the Issue for the full list of a ected methods.

Deprecation cycle:

<1.3: calling such methods on very long sequences could produce negative results due to
integer over ow

>=1.3: detect over ow in such methods and throw exception immediately

—

—

Check for index over ow in operations on very long sequences

—

—

Unify split by an empty match regex result across the platforms

568

https://youtrack.jetbrains.com/issue/KT-17176
https://youtrack.jetbrains.com/issue/KT-16097

Issue: KT-21049

Component: kotlin-stdlib (JVM)

Incompatible change type: Behavioral

Short summary: since Kotlin 1.3, unify behavior of split method by empty match regex

across all platforms

Deprecation cycle:

<1.3: behavior of described calls is di erent when comparing JS, JRE 6, JRE 7 versus JRE 8+

>=1.3: unify behavior across the platforms

Issue: KT-23799

Component: other

Incompatible change type: Binary

Short summary: Kotlin 1.3 discontinues the following deprecated binary artifacts:

kotlin-runtime: use kotlin-stdlib instead

kotlin-stdlib-jre7/8: use kotlin-stdlib-jdk7/8 instead

kotlin-jslib in the compiler distribution: use kotlin-stdlib-js instead

Deprecation cycle:

1.2.X: the artifacts were marked as deprecated, the compiler reported warning on usage
of those artifacts

>=1.3: the artifacts are discontinued

—

—

Discontinued deprecated artifacts in the compiler distribution

—

—

—

—

—

Annotations in stdlib

569

https://youtrack.jetbrains.com/issue/KT-21049
https://youtrack.jetbrains.com/issue/KT-23799

Issue: KT-21784

Component: kotlin-stdlib (JVM)

Incompatible change type: Binary

Short summary: Kotlin 1.3 removes annotations from the package
org.jetbrains.annotations from stdlib and moves them to the separate artifacts

shipped with the compiler: annotations-13.0.jar and mutability-annotations-

compat.jar

Deprecation cycle:

<1.3: annotations were shipped with the stdlib artifact

>=1.3: annotations ship in separate artifacts

—

—

570

https://youtrack.jetbrains.com/issue/KT-21784

FAQ

Kotlin is an OSS statically typed programming language that targets the JVM, Android, JavaScript
and Native. It’s developed by JetBrains. The project started in 2010 and was open source from
very early on. The rst o cial 1.0 release was in February 2016.

The currently released version is 1.3.50, published on August 22, 2019.

Yes. Kotlin is free, has been free and will remain free. It is developed under the Apache 2.0
license and the source code is available on GitHub.

Kotlin has both object-oriented and functional constructs. You can use it in both OO and FP styles,
or mix elements of the two. With rst-class support for features such as higher-order functions,
function types and lambdas, Kotlin is a great choice if you’re doing or exploring functional
programming.

Kotlin is more concise. Rough estimates indicate approximately a 40% cut in the number of lines
of code. It’s also more type-safe, e.g. support for non-nullable types makes applications less
prone to NPE’s. Other features including smart casting, higher-order functions, extension
functions and lambdas with receivers provide the ability to write expressive code as well as
facilitating creation of DSL.

FAQ

What is Kotlin?

What is the current version of Kotlin?

Is Kotlin free?

Is Kotlin an object-oriented language or a functional one?

What advantages does Kotlin give me over the Java programming language?

Is Kotlin compatible with the Java programming language?

571

http://www.jetbrains.com
https://github.com/jetbrains/kotlin

Yes. Kotlin is 100% interoperable with the Java programming language and major emphasis has
been placed on making sure that your existing codebase can interact properly with Kotlin. You
can easily call Kotlin code from Java and Java code from Kotlin. This makes adoption much easier
and lower-risk. There’s also an automated Java-to-Kotlin converter built into the IDE that
simpli es migration of existing code.

Kotlin can be used for any kind of development, be it server-side, client-side web and Android.
With Kotlin/Native currently in the works, support for other platforms such as embedded
systems, macOS and iOS is coming. People are using Kotlin for mobile and server-side
applications, client-side with JavaScript or JavaFX, and data science, just to name a few
possibilities.

Yes. Kotlin is supported as a rst-class language on Android. There are hundreds of applications
already using Kotlin for Android, such as Basecamp, Pinterest and more. For more information
check out the resource on Android development.

Yes. Kotlin is 100% compatible with the JVM and as such you can use any existing frameworks
such as Spring Boot, vert.x or JSF. In addition there are speci c frameworks written in Kotlin such
as Ktor. For more information check out the resource on server-side development.

Yes. In addition to using for backend web, you can also use Kotlin/JS for client-side web. Kotlin
can use de nitions from De nitelyTyped to get static typing for common JavaScript libraries, and
it is compatible with existing module systems such as AMD and CommonJS. For more information
check out the resource on client-side development.

Yes. You can use any Java UI framework such as JavaFx, Swing or other. In addition there are
Kotlin speci c frameworks such as TornadoFX.

Kotlin/Native is currently in the works. It compiles Kotlin to native code that can run without a
VM. There is a Technology Preview released but it is not production-ready yet, and doesn’t yet
target all the platforms that we plan to support for 1.0. For more information check out the blog
post announcing Kotlin/Native.

What can I use Kotlin for?

Can I use Kotlin for Android development?

Can I use Kotlin for server-side development?

Can I use Kotlin for web development?

Can I use Kotlin for desktop development?

Can I use Kotlin for native development?

572

http://github.com/kotlin/ktor
http://definitelytyped.org
https://github.com/edvin/tornadofx
https://blog.jetbrains.com/kotlin/tag/native/
https://blog.jetbrains.com/kotlin/2017/04/kotlinnative-tech-preview-kotlin-without-a-vm/

Kotlin is supported by all major Java IDEs including IntelliJ IDEA, Android Studio, Eclipse and
NetBeans. In addition, a command line compiler is available and provides straightforward
support for compiling and running applications.

On the JVM side, the main build tools include Gradle, Maven, Ant, and Kobalt. There are also
some build tools available that target client-side JavaScript.

When targeting the JVM, Kotlin produces Java compatible bytecode. When targeting JavaScript,
Kotlin transpiles to ES5.1 and generates code which is compatible with module systems including
AMD and CommonJS. When targeting native, Kotlin will produce platform-speci c code (via LLVM).

No. Kotlin lets you choose between generating Java 6 and Java 8 compatible bytecode. More
optimal byte code may be generated for higher versions of the platform.

Kotlin is inspired by existing languages such as Java, C#, JavaScript, Scala and Groovy. We've tried
to ensure that Kotlin is easy to learn, so that people can easily jump on board, reading and
writing Kotlin in a matter of days. Learning idiomatic Kotlin and using some more of its advanced
features can take a little longer, but overall it is not a complicated language.

There are too many companies using Kotlin to list, but some more visible companies that have
publicly declared usage of Kotlin, be this via blog posts, GitHub repositories or talks include
Square, Pinterest, Basecamp or Corda.

Kotlin is primarily developed by a team of engineers at JetBrains (current team size is 50+). The
lead language designer is Andrey Breslav. In addition to the core team, there are also over 250
external contributors on GitHub.

The best place to start is this website. From there you can download the compiler, try it online as
well as get access to resources, reference documentation and tutorials.

What IDEs support Kotlin?

What build tools support Kotlin?

What does Kotlin compile down to?

Does Kotlin only target Java 6?

Is Kotlin hard?

What companies are using Kotlin?

Who develops Kotlin?

Where can I learn more about Kotlin?

573

http://plugins.netbeans.org/plugin/68590/kotlin
http://beust.com/kobalt/home/index.html
https://medium.com/square-corner-blog/square-open-source-loves-kotlin-c57c21710a17
https://www.youtube.com/watch?v=mDpnc45WwlI
https://m.signalvnoise.com/how-we-made-basecamp-3s-android-app-100-kotlin-35e4e1c0ef12
https://docs.corda.net/releases/release-M9.2/further-notes-on-kotlin.html
https://twitter.com/abreslav
https://kotlinlang.org
https://play.kotlinlang.org

There are already a number of books available for Kotlin, including Kotlin in Action which is by
Kotlin team members Dmitry Jemerov and Svetlana Isakova, Kotlin for Android Developers
targeted at Android developers.

There are a few courses available for Kotlin, including a Pluralsight Kotlin Course by Kevin Jones,
an O’Reilly Course by Hadi Hariri and an Udemy Kotlin Course by Peter Sommerho .

There are also many recordings of Kotlin talks available on YouTube and Vimeo.

Yes. Kotlin has a very vibrant community. Kotlin developers hang out on the Kotlin forums,
StackOver ow and more actively on the Kotlin Slack (with close to 20000 members as of October
2018).

Yes. There are many User Groups and Meetups now focused exclusively around Kotlin. You can
nd a list on the web site. In addition there are community organised Kotlin Nights events

around the world.

Yes. The o cial annual KotlinConf is hosted by JetBrains. It has taken place in San-Francisco in
2017 and in Amsterdam in 2018. Kotlin is also being covered in di erent conferences worldwide.
You can nd a list of upcoming talks on the web site.

Yes. The most active Kotlin account is on Twitter.

The web site has a bunch of online resources, including Kotlin Digests by community members, a
newsletter, a podcast and more.

Logos can be downloaded here. When using the logos, please follow simple rules in the
guidelines.pdf inside the archive and Kotlin brand usage guidelines.

Are there any books on Kotlin?

Are there any online courses available for Kotlin?

Does Kotlin have a community?

Are there Kotlin events?

Is there a Kotlin conference?

Is Kotlin on Social Media?

Any other online Kotlin resources?

Where can I get an HD Kotlin logo?

574

https://www.manning.com/books/kotlin-in-action
https://leanpub.com/kotlin-for-android-developers
https://www.pluralsight.com/courses/kotlin-getting-started
http://shop.oreilly.com/product/0636920052982.do
http://petersommerhoff.com/dev/kotlin/kotlin-beginner-tutorial/
http://kotlinlang.org/community/talks.html
http://discuss.kotlinlang.org
http://stackoverflow.com/questions/tagged/kotlin
http://slack.kotlinlang.org
https://kotlinconf.com/
https://kotlinconf.com/2017/
https://twitter.com/kotlin
https://kotlinlang.org/community/
https://kotlin.link
http://www.kotlinweekly.net
https://talkingkotlin.com
https://resources.jetbrains.com/storage/products/kotlin/docs/kotlin_logos.zip

Kotlin xes a series of issues that Java su ers from:

Null references are controlled by the type system.

No raw types

Arrays in Kotlin are invariant

Kotlin has proper function types, as opposed to Java's SAM-conversions

Use-site variance without wildcards

Kotlin does not have checked exceptions

Checked exceptions

Primitive types that are not classes

Static members

Non-private elds

Wildcard-types

Ternary-operator a ? b : c

Lambda expressions + Inline functions = performant custom control structures

Extension functions

Null-safety

Smart casts

String templates

Properties

Primary constructors

First-class delegation

Type inference for variable and property types

Singletons

Declaration-site variance & Type projections

Range expressions

Operator overloading

Companion objects

Data classes

Comparison to Java Programming Language

Some Java issues addressed in Kotlin

—

—

—

—

—

—

What Java has that Kotlin does not
—

—

—

—

—

—

What Kotlin has that Java does not
—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

575

Separate interfaces for read-only and mutable collections

Coroutines

—

—

576

577

	Table of Contents
	Overview
	Using Kotlin for Server-side Development
	Frameworks for Server-side Development with Kotlin
	Deploying Kotlin Server-side Applications
	Users of Kotlin on the Server Side
	Next Steps

	Using Kotlin for Android Development
	Kotlin for Android Case Studies
	Tools for Android Development
	Next Steps

	Kotlin JavaScript Overview
	How it can be used
	Getting Started with Kotlin to JavaScript

	Kotlin/Native for Native
	Why Kotlin/Native?
	Target Platforms
	Interoperability
	Sharing Code between Platforms
	How to Start

	Coroutines for asynchronous programming and more
	How to Start

	Multiplatform Programming
	How it works
	Multiplatform Libraries
	Use cases
	Android — iOS
	Client — Server

	How to start

	What's New in Kotlin 1.1
	Table of Contents
	JavaScript
	Coroutines (experimental)
	Other Language Features
	Type aliases
	Bound callable references
	Sealed and data classes
	Destructuring in lambdas
	Underscores for unused parameters
	Underscores in numeric literals
	Shorter syntax for properties
	Inline property accessors
	Local delegated properties
	Interception of delegated property binding
	Generic enum value access
	Scope control for implicit receivers in DSLs
	rem operator

	Standard library
	String to number conversions
	onEach()
	also(), takeIf() and takeUnless()
	groupingBy()
	Map.toMap() and Map.toMutableMap()
	Map.minus(key)
	minOf() and maxOf()
	Array-like List instantiation functions
	Map.getValue()
	Abstract collections
	Array manipulation functions

	JVM Backend
	Java 8 bytecode support
	Java 8 standard library support
	Parameter names in the bytecode
	Constant inlining
	Mutable closure variables
	javax.script support
	kotlin.reflect.full

	JavaScript Backend
	Unified standard library
	Better code generation
	The external modifier
	Improved import handling

	What's New in Kotlin 1.2
	Table of Contents
	Multiplatform Projects (experimental)
	Other Language Features
	Array literals in annotations
	Lateinit top-level properties and local variables
	Checking whether a lateinit var is initialized
	Inline functions with default functional parameters
	Information from explicit casts is used for type inference
	Smart cast improvements
	Support for ::foo as a shorthand for this::foo
	Breaking change: sound smart casts after try blocks
	Deprecation: data classes overriding copy
	Deprecation: nested types in enum entries
	Deprecation: single named argument for vararg
	Deprecation: inner classes of generic classes extending Throwable
	Deprecation: mutating backing field of a read-only property

	Standard Library
	Kotlin standard library artifacts and split packages
	windowed, chunked, zipWithNext
	fill, replaceAll, shuffle/shuffled
	Math operations in kotlin-stdlib
	Operators and conversions for BigInteger and BigDecimal
	Floating point to bits conversions
	Regex is now serializable
	Closeable.use calls Throwable.addSuppressed if available

	JVM Backend
	Constructor calls normalization
	Java-default method calls
	Breaking change: consistent behavior of x.equals(null) for platform types
	Breaking change: fix for platform null escaping through an inlined extension receiver

	JavaScript Backend
	TypedArrays support enabled by default

	Tools
	Warnings as errors

	What's New in Kotlin 1.3
	Coroutines release
	Kotlin/Native
	Multiplatform Projects
	Contracts
	Contracts in stdlib
	Custom Contracts

	Capturing when subject in a variable
	@JvmStatic and @JvmField in companion of interfaces
	Nested declarations in annotation classes
	Parameterless main
	Functions with big arity
	Progressive mode
	Inline classes
	Unsigned integers
	@JvmDefault

	Standard library
	Multiplatform Random
	isNullOrEmpty/orEmpty extensions
	Copying elements between two existing arrays
	associateWith
	ifEmpty and ifBlank functions
	Sealed classes in reflection
	Smaller changes

	Tooling
	Code Style Support in IDE
	kotlinx.serialization
	Scripting update
	Scratches support

	Getting Started
	Basic Syntax
	Package definition and imports
	Program entry point
	Functions
	Variables
	Comments
	String templates
	Conditional expressions
	Nullable values and null checks
	Type checks and automatic casts
	for loop
	while loop
	when expression
	Ranges
	Collections
	Creating basic classes and their instances

	Idioms
	Creating DTOs (POJOs/POCOs)
	Default values for function parameters
	Filtering a list
	Checking element presence in a collection.
	String Interpolation
	Instance Checks
	Traversing a map/list of pairs
	Using ranges
	Read-only list
	Read-only map
	Accessing a map
	Lazy property
	Extension Functions
	Creating a singleton
	If not null shorthand
	If not null and else shorthand
	Executing a statement if null
	Get first item of a possibly empty collection
	Execute if not null
	Map nullable value if not null
	Return on when statement
	'try/catch' expression
	'if' expression
	Builder-style usage of methods that return Unit
	Single-expression functions
	Calling multiple methods on an object instance (with)
	Java 7's try with resources
	Convenient form for a generic function that requires the generic type information
	Consuming a nullable Boolean
	Swapping two variables

	Coding Conventions
	Applying the style guide
	Source code organization
	Directory structure
	Source file names
	Source file organization
	Class layout
	Interface implementation layout
	Overload layout

	Naming rules
	Function names
	Property names
	Choosing good names

	Formatting
	Horizontal whitespace
	Colon
	Class header formatting
	Modifiers
	Annotation formatting
	File annotations
	Function formatting
	Expression body formatting
	Property formatting
	Formatting control flow statements
	Method call formatting
	Chained call wrapping
	Lambda formatting

	Documentation comments
	Avoiding redundant constructs
	Unit
	Semicolons
	String templates

	Idiomatic use of language features
	Immutability
	Default parameter values
	Type aliases
	Lambda parameters
	Returns in a lambda
	Named arguments
	Using conditional statements
	if versus when
	Using nullable Boolean values in conditions
	Using loops
	Loops on ranges
	Using strings
	Functions vs Properties
	Using extension functions
	Using infix functions
	Factory functions
	Platform types
	Using scope functions apply/with/run/also/let

	Coding conventions for libraries

	Basics
	Basic Types
	Numbers
	Literal constants
	Underscores in numeric literals (since 1.1)
	Representation
	Explicit conversions
	Operations
	Floating point numbers comparison

	Characters
	Booleans
	Arrays
	Primitive type arrays

	Unsigned integers
	Specialized classes
	Literals
	Experimental status of unsigned integers
	Further discussion

	Strings
	String literals
	String templates

	Packages
	Default Imports
	Imports
	Visibility of Top-level Declarations

	Control Flow: if, when, for, while
	If Expression
	When Expression
	For Loops
	While Loops
	Break and continue in loops

	Returns and Jumps
	Break and Continue Labels
	Return at Labels

	Classes and Objects
	Classes and Inheritance
	Classes
	Constructors
	Creating instances of classes
	Class members

	Inheritance
	Overriding methods
	Overriding properties
	Derived class initialization order
	Calling the superclass implementation
	Overriding rules

	Abstract classes
	Companion objects

	Properties and Fields
	Declaring Properties
	Getters and Setters
	Backing Fields
	Backing Properties

	Compile-Time Constants
	Late-Initialized Properties and Variables
	Checking whether a lateinit var is initialized (since 1.2)

	Overriding Properties
	Delegated Properties

	Interfaces
	Implementing Interfaces
	Properties in Interfaces
	Interfaces Inheritance
	Resolving overriding conflicts

	Visibility Modifiers
	Packages
	Classes and Interfaces
	Constructors
	Local declarations

	Modules

	Extensions
	Extension functions
	Extensions are resolved statically
	Nullable receiver
	Extension properties
	Companion object extensions
	Scope of extensions
	Declaring extensions as members
	Note on visibility

	Data Classes
	Properties Declared in the Class Body
	Copying
	Data Classes and Destructuring Declarations
	Standard Data Classes

	Sealed Classes
	Generics
	Variance
	Declaration-site variance

	Type projections
	Use-site variance: Type projections
	Star-projections

	Generic functions
	Generic constraints
	Upper bounds

	Type erasure

	Nested and Inner Classes
	Inner classes
	Anonymous inner classes

	Enum Classes
	Initialization
	Anonymous Classes
	Implementing Interfaces in Enum Classes
	Working with Enum Constants

	Object Expressions and Declarations
	Object expressions
	Object declarations
	Companion Objects
	Semantic difference between object expressions and declarations

	Type aliases

	Inline classes
	Members
	Inheritance
	Representation
	Mangling

	Inline classes vs type aliases
	Experimental status of inline classes
	Enabling inline classes in Gradle
	Enabling inline classes in Maven

	Further discussion

	Delegation
	Property Delegation
	Implementation by Delegation
	Overriding a member of an interface implemented by delegation

	Delegated Properties
	Standard Delegates
	Lazy
	Observable

	Storing Properties in a Map
	Local Delegated Properties (since 1.1)
	Property Delegate Requirements
	Translation Rules
	Providing a delegate (since 1.1)

	Functions and Lambdas
	Functions
	Function declarations
	Function usage
	Parameters
	Default arguments
	Named arguments
	Unit-returning functions
	Single-expression functions
	Explicit return types
	Variable number of arguments (Varargs)
	Infix notation

	Function scope
	Local functions
	Member functions

	Generic functions
	Inline functions
	Extension functions
	Higher-order functions and lambdas
	Tail recursive functions

	Higher-Order Functions and Lambdas
	Higher-Order Functions
	Function types
	Instantiating a function type
	Invoking a function type instance
	Inline functions

	Lambda Expressions and Anonymous Functions
	Lambda expression syntax
	Passing a lambda to the last parameter
	it: implicit name of a single parameter
	Returning a value from a lambda expression
	Underscore for unused variables (since 1.1)
	Destructuring in lambdas (since 1.1)
	Anonymous functions
	Closures
	Function literals with receiver

	Inline Functions
	noinline
	Non-local returns
	Reified type parameters
	Inline properties (since 1.1)
	Restrictions for public API inline functions

	Collections
	Kotlin Collections Overview
	Collection types
	Collection
	List
	Set
	Map

	Constructing Collections
	Constructing from elements
	Empty collections
	Initializer functions for lists
	Concrete type constructors
	Copying
	Invoking functions on other collections

	Iterators
	List iterators
	Mutable iterators

	Ranges and Progressions
	Range
	Progression

	Sequences
	Constructing
	From elements
	From Iterable
	From function
	From chunks

	Sequence operations
	Sequence processing example
	Iterable
	Sequence

	Collection Operations Overview
	Extension and member functions
	Common operations
	Write operations

	Collection Transformations
	Mapping
	Zipping
	Association
	Flattening
	String representation

	Filtering
	Filtering by predicate
	Partitioning
	Testing predicates

	plus and minus Operators
	Grouping
	Retrieving Collection Parts
	Slice
	Take and drop
	Chunked
	Windowed

	Retrieving Single Elements
	Retrieving by position
	Retrieving by condition
	Random element
	Checking existence

	Collection Ordering
	Natural order
	Custom orders
	Reverse order
	Random order

	Collection Aggregate Operations
	Fold and reduce

	Collection Write Operations
	Adding elements
	Removing elements
	Updating elements

	List Specific Operations
	Retrieving elements by index
	Retrieving list parts
	Finding element positions
	Linear search
	Binary search in sorted lists

	List write operations
	Adding
	Updating
	Removing
	Sorting

	Set Specific Operations
	Map Specific Operations
	Retrieving keys and values
	Filtering
	plus and minus operators
	Map write operations
	Adding and updating entries
	Removing entries

	Multiplatform Programming
	Platform-Specific Declarations
	Building Multiplatform Projects with Gradle
	Table of Contents
	Project Structure
	Setting up a Multiplatform Project
	Gradle Plugin
	Setting up Targets
	Supported platforms
	Configuring compilations

	Configuring Source Sets
	Connecting source sets
	Adding Dependencies
	Language settings

	Default Project Layout
	Running Tests
	Publishing a Multiplatform Library
	Experimental metadata publishing mode
	Disambiguating targets

	Java Support in JVM Targets
	Android Support
	Publishing Android libraries

	Using Kotlin/Native Targets
	Building final native binaries
	CInterop support

	Other
	Destructuring Declarations
	Example: Returning Two Values from a Function
	Example: Destructuring Declarations and Maps
	Underscore for unused variables (since 1.1)
	Destructuring in Lambdas (since 1.1)

	Type Checks and Casts: 'is' and 'as'
	is and !is Operators
	Smart Casts
	"Unsafe" cast operator
	"Safe" (nullable) cast operator
	Type erasure and generic type checks
	Unchecked casts

	This Expression
	Qualified this

	Equality
	Structural equality
	Floating point numbers equality
	Referential equality

	Operator overloading
	Unary operations
	Unary prefix operators
	Increments and decrements

	Binary operations
	Arithmetic operators
	'In' operator
	Indexed access operator
	Invoke operator
	Augmented assignments
	Equality and inequality operators
	Comparison operators
	Property delegation operators

	Infix calls for named functions

	Null Safety
	Nullable types and Non-Null Types
	Checking for null in conditions
	Safe Calls
	Elvis Operator
	The !! Operator
	Safe Casts
	Collections of Nullable Type

	Exceptions
	Exception Classes
	Try is an expression

	Checked Exceptions
	The Nothing type
	Java Interoperability

	Annotations
	Annotation Declaration
	Usage
	Constructors
	Lambdas

	Annotation Use-site Targets
	Java Annotations
	Arrays as annotation parameters
	Accessing properties of an annotation instance

	Reflection
	Class References
	Bound Class References (since 1.1)
	Callable references
	Function References
	Example: Function Composition
	Property References
	Interoperability With Java Reflection
	Constructor References

	Bound Function and Property References (since 1.1)
	Bound constructor references

	Scope Functions
	Distinctions
	Context object: this or it
	Return value

	Functions
	let
	with
	run
	apply
	also

	Function selection
	takeIf and takeUnless

	Type-Safe Builders
	A type-safe builder example
	How it works
	Scope control: @DslMarker (since 1.1)
	Full definition of the com.example.html package

	Experimental API Markers
	Using experimental APIs
	Propagating use
	Non-propagating use
	Module-wide use

	Marking experimental API
	Creating marker annotations
	Marking API elements
	Module-wide markers

	Graduation of experimental API
	Experimental status of experimental API markers

	Reference
	Keywords and Operators
	Hard Keywords
	Soft Keywords
	Modifier Keywords
	Special Identifiers
	Operators and Special Symbols

	Grammar
	Description
	Notation
	Grammar source files
	Symbols and naming
	Scope

	Syntax grammar
	General
	Classes
	Class members
	Enum classes
	Types
	Statements
	Expressions
	Modifiers
	Annotations
	Identifiers

	Lexical grammar
	General
	Separators and operations
	Keywords
	Literals
	Identifiers
	Characters
	Strings

	Java Interop
	Calling Java code from Kotlin
	Getters and Setters
	Methods returning void
	Escaping for Java identifiers that are keywords in Kotlin
	Null-Safety and Platform Types
	Notation for Platform Types
	Nullability annotations
	Annotating type parameters
	JSR-305 Support

	Mapped types
	Java generics in Kotlin
	Java Arrays
	Java Varargs
	Operators
	Checked Exceptions
	Object Methods
	wait()/notify()
	getClass()
	clone()
	finalize()

	Inheritance from Java classes
	Accessing static members
	Java Reflection
	SAM Conversions
	Using JNI with Kotlin

	Calling Kotlin from Java
	Properties
	Package-level functions
	Instance fields
	Static fields
	Static methods
	Default methods in interfaces
	Visibility
	KClass
	Handling signature clashes with @JvmName
	Overloads generation
	Checked exceptions
	Null-safety
	Variant generics
	Translation of type Nothing

	JavaScript
	Dynamic Type
	Calling JavaScript from Kotlin
	Inline JavaScript
	external modifier
	Declaring (static) members of a class
	Declaring optional parameters
	Extending JavaScript classes
	external interfaces

	Calling Kotlin from JavaScript
	Isolating declarations in a separate JavaScript object
	Package structure
	@JsName annotation

	Representing Kotlin types in JavaScript

	JavaScript Modules
	Choosing the Target Module System
	From IntelliJ IDEA
	From Maven
	From Gradle

	@JsModule annotation
	Applying @JsModule to packages
	Importing deeper package hierarchies
	@JsNonModule annotation
	Notes

	JavaScript Reflection
	JavaScript DCE
	How to use
	Configuring
	Development mode

	Example
	Notes

	Native
	Concurrency in Kotlin/Native
	Workers
	Object transfer and freezing
	Object subgraph detachment
	Raw shared memory
	Global variables and singletons

	Immutability in Kotlin/Native
	Kotlin/Native libraries
	Kotlin compiler specifics
	cinterop tool specifics
	klib utility
	Several examples

	Advanced topics
	Library search sequence
	The library format

	Platform libraries
	Overview
	POSIX bindings
	Popular native libraries

	Availability by default
	Examples

	Kotlin/Native interoperability
	Introduction
	Platform libraries
	Simple example
	Creating bindings for a new library
	Selecting library headers
	C compiler and linker options
	Adding custom declarations
	Including static library in your klib

	Using bindings
	Basic interop types
	Memory allocation
	Passing pointers to bindings
	Working with the strings
	Scope-local pointers
	Passing and receiving structs by value
	Callbacks
	Macros
	Definition file hints
	Portability
	Object pinning

	Kotlin/Native interoperability with Swift/Objective-C
	Usage
	Mappings
	Name translation
	Initializers
	Top-level functions and properties
	Method names translation
	Errors and exceptions
	Category members
	Kotlin singletons
	NSNumber
	NSMutableString
	Collections
	Function types
	Generics
	To Use

	Casting between mapped types
	Subclassing
	Subclassing Kotlin classes and interfaces from Swift/Objective-C
	Subclassing Swift/Objective-C classes and protocols from Kotlin

	C features
	Unsupported

	CocoaPods integration
	CocoaPods Gradle plugin
	Workflow
	Interoperability
	Current Limitations

	Kotlin/Native Gradle plugin
	Applying the multiplatform plugin
	Managing targets
	Managing sources
	Managing dependencies
	Output kinds
	Publishing
	Cinterop support
	kotlin-platform-native reference
	Overview
	Source management
	Targets and output kinds
	Compile tasks
	Running tests
	Dependencies
	Using cinterop
	Publishing
	Serialization plugin
	DSL example

	Debugging
	Producing binaries with debug info with Kotlin/Native compiler
	Breakpoints
	Stepping
	Variable inspection
	Known issues
	Q: How do I run my program?
	Q: What is Kotlin/Native memory management model?
	Q: How do I create a shared library?
	Q: How do I create a static library or an object file?
	Q: How do I run Kotlin/Native behind a corporate proxy?
	Q: How do I specify a custom Objective-C prefix/name for my Kotlin framework?
	Q: How do I rename the iOS framework? (default name is <project name>.framework)
	Q: How do I enable bitcode for my Kotlin framework?
	Q: Why do I see InvalidMutabilityException?
	Q: How do I make a singleton object mutable?
	Q: How can I compile my project against the Kotlin/Native master?

	Coroutines
	Table of contents
	Additional references
	Coroutine Basics
	Your first coroutine
	Bridging blocking and non-blocking worlds
	Waiting for a job
	Structured concurrency
	Scope builder
	Extract function refactoring
	Coroutines ARE light-weight
	Global coroutines are like daemon threads

	Cancellation and Timeouts
	Cancelling coroutine execution
	Cancellation is cooperative
	Making computation code cancellable
	Closing resources with finally
	Run non-cancellable block
	Timeout

	Composing Suspending Functions
	Sequential by default
	Concurrent using async
	Lazily started async
	Async-style functions
	Structured concurrency with async

	Coroutine Context and Dispatchers
	Dispatchers and threads
	Unconfined vs confined dispatcher
	Debugging coroutines and threads
	Jumping between threads
	Job in the context
	Children of a coroutine
	Parental responsibilities
	Naming coroutines for debugging
	Combining context elements
	Coroutine scope
	Thread-local data

	Asynchronous Flow
	Representing multiple values
	Sequences
	Suspending functions
	Flows

	Flows are cold
	Flow cancellation
	Flow builders
	Intermediate flow operators
	Transform operator
	Size-limiting operators

	Terminal flow operators
	Flows are sequential
	Flow context
	Wrong emission withContext
	flowOn operator

	Buffering
	Conflation
	Processing the latest value

	Composing multiple flows
	Zip
	Combine

	Flattening flows
	flatMapConcat
	flatMapMerge
	flatMapLatest

	Flow exceptions
	Collector try and catch
	Everything is caught

	Exception transparency
	Transparent catch
	Catching declaratively

	Flow completion
	Imperative finally block
	Declarative handling
	Upstream exceptions only

	Imperative versus declarative
	Launching flow

	Channels
	Channel basics
	Closing and iteration over channels
	Building channel producers
	Pipelines
	Prime numbers with pipeline
	Fan-out
	Fan-in
	Buffered channels
	Channels are fair
	Ticker channels

	Exception Handling
	Exception propagation
	CoroutineExceptionHandler
	Cancellation and exceptions
	Exceptions aggregation
	Supervision
	Supervision job
	Supervision scope
	Exceptions in supervised coroutines

	Shared mutable state and concurrency
	The problem
	Volatiles are of no help
	Thread-safe data structures
	Thread confinement fine-grained
	Thread confinement coarse-grained
	Mutual exclusion
	Actors

	Select Expression (experimental)
	Selecting from channels
	Selecting on close
	Selecting to send
	Selecting deferred values
	Switch over a channel of deferred values

	Tools
	Documenting Kotlin Code
	Generating the Documentation
	KDoc Syntax
	Block Tags
	@param <name>
	@return
	@constructor
	@receiver
	@property <name>
	@throws <class>, @exception <class>
	@sample <identifier>
	@see <identifier>
	@author
	@since
	@suppress

	Inline Markup
	Linking to Elements

	Module and Package Documentation

	Annotation Processing with Kotlin
	Using in Gradle
	Annotation processor arguments
	Gradle build cache support (since 1.2.20)
	Running kapt tasks in parallel (since 1.2.60)
	Compile avoidance for kapt (since 1.3.20)
	Incremental annotation processing (since 1.3.30)
	Java compiler options
	Non-existent type correction
	Using in Maven
	Using in CLI
	Generating Kotlin sources
	AP/Javac options encoding

	Using Gradle
	Plugin and Versions
	Building Kotlin Multiplatform Projects
	Targeting the JVM
	Targeting JavaScript
	Targeting Android
	Android Studio

	Configuring Dependencies
	Annotation Processing
	Incremental Compilation
	Gradle Build Cache Support (since 1.2.20)
	Compiler Options
	Attributes Common for JVM, JS, and JS DCE
	Attributes Common for JVM and JS
	Attributes Specific for JVM
	Attributes Specific for JS

	Generating Documentation
	OSGi
	Using Gradle Kotlin DSL
	Examples

	Using Maven
	Plugin and Versions
	Dependencies
	Compiling Kotlin only source code
	Compiling Kotlin and Java sources
	Incremental compilation
	Annotation processing
	Coroutines support
	Jar file
	Self-contained Jar file
	Targeting JavaScript
	Specifying compiler options
	Attributes common for JVM and JS
	Attributes specific for JVM
	Attributes specific for JS

	Generating documentation
	OSGi
	Examples

	Using Ant
	Getting the Ant Tasks
	Targeting JVM with Kotlin-only source
	Targeting JVM with Kotlin-only source and multiple roots
	Targeting JVM with Kotlin and Java source
	Targeting JavaScript with single source folder
	Targeting JavaScript with Prefix, PostFix and sourcemap options
	Targeting JavaScript with single source folder and metaInfo option
	References
	Attributes common for kotlinc and kotlin2js
	kotlinc Attributes
	kotlin2js Attributes
	Passing raw compiler arguments

	Kotlin and OSGi
	Maven
	Gradle
	FAQ
	Why not just add required manifest options to all Kotlin libraries

	Compiler Plugins
	All-open compiler plugin
	Using in Gradle
	Using in Maven
	Spring support
	Using in CLI

	No-arg compiler plugin
	Using in Gradle
	Using in Maven
	JPA support
	Using in CLI

	SAM-with-receiver compiler plugin
	Using in Gradle
	Using in Maven
	Using in CLI

	Code Style Migration Guide
	Kotlin Coding Conventions and IntelliJ IDEA formatter
	Differences between "Kotlin Coding Conventions" and "IntelliJ IDEA default code style"
	Migration to a new code style discussion
	Migration to a new code style
	In Gradle
	In Maven

	Store old code style in project

	Evolution
	Kotlin Evolution
	Principles of Pragmatic Evolution
	Incompatible Changes
	Dealing with compiler bugs

	Decision Making
	Feature Releases and Incremental Releases
	EAP Builds
	Experimental features
	Status of different components

	Libraries
	Compiler Keys
	Compatibility Tools
	Compatibility flags
	Evolving the binary format

	Stability of Different Components
	Compatibility Guide for Kotlin 1.3
	Basic terms
	Evaluation order of constructor arguments regarding <clinit> call
	Missing getter-targeted annotations on annotation constructor parameters
	Missing errors in class constructor’s @get: annotations
	Nullability assertions on access to Java types annotated with @NotNull
	Unsound smartcasts on enum members
	val backing field reassignment in getter
	Array capturing before the for-loop where it is iterated
	Nested classifiers in enum entries
	Data class overriding copy
	Inner classes inheriting Throwable that capture generic parameters from the outer class
	Visibility rules regarding complex class hierarchies with companion objects
	Non-constant vararg annotation parameters
	Local annotation classes
	Smartcasts on local delegated properties
	mod operator convention
	Passing single element to vararg in named form
	Retention of annotations with target EXPRESSION
	Annotations with target PARAMETER shouldn't be applicable to parameter's type
	Array.copyOfRange throws an exception when indices are out of bounds instead of enlarging the returned array
	Progressions of ints and longs with a step of Int.MIN_VALUE and Long.MIN_VALUE are outlawed and won’t be allowed to be instantiated
	Check for index overflow in operations on very long sequences
	Unify split by an empty match regex result across the platforms
	Discontinued deprecated artifacts in the compiler distribution
	Annotations in stdlib

	FAQ
	FAQ
	What is Kotlin?
	What is the current version of Kotlin?
	Is Kotlin free?
	Is Kotlin an object-oriented language or a functional one?
	What advantages does Kotlin give me over the Java programming language?
	Is Kotlin compatible with the Java programming language?
	What can I use Kotlin for?
	Can I use Kotlin for Android development?
	Can I use Kotlin for server-side development?
	Can I use Kotlin for web development?
	Can I use Kotlin for desktop development?
	Can I use Kotlin for native development?
	What IDEs support Kotlin?
	What build tools support Kotlin?
	What does Kotlin compile down to?
	Does Kotlin only target Java 6?
	Is Kotlin hard?
	What companies are using Kotlin?
	Who develops Kotlin?
	Where can I learn more about Kotlin?
	Are there any books on Kotlin?
	Are there any online courses available for Kotlin?
	Does Kotlin have a community?
	Are there Kotlin events?
	Is there a Kotlin conference?
	Is Kotlin on Social Media?
	Any other online Kotlin resources?
	Where can I get an HD Kotlin logo?

	Comparison to Java Programming Language
	Some Java issues addressed in Kotlin
	What Java has that Kotlin does not
	What Kotlin has that Java does not

